diff --git a/.cproject b/.cproject index d2323e19c..f3f62e42d 100644 --- a/.cproject +++ b/.cproject @@ -2303,14 +2303,6 @@ true true - - make - -j2 - Pose2SLAMwSPCG_easy.run - true - true - true - make -j5 @@ -2447,6 +2439,22 @@ true true + + make + -j4 + Pose2SLAMwSPCG.run + true + true + true + + + make + -j4 + SFMExample_SmartFactorPCG.run + true + true + true + make -j2 diff --git a/examples/SFMExample_SmartFactorPCG.cpp b/examples/SFMExample_SmartFactorPCG.cpp new file mode 100644 index 000000000..82d7f62c3 --- /dev/null +++ b/examples/SFMExample_SmartFactorPCG.cpp @@ -0,0 +1,118 @@ +/* ---------------------------------------------------------------------------- + + * GTSAM Copyright 2010, Georgia Tech Research Corporation, + * Atlanta, Georgia 30332-0415 + * All Rights Reserved + * Authors: Frank Dellaert, et al. (see THANKS for the full author list) + + * See LICENSE for the license information + + * -------------------------------------------------------------------------- */ + +/** + * @file SFMExample_SmartFactorPCG.cpp + * @brief Version of SFMExample_SmartFactor that uses Preconditioned Conjugate Gradient + * @author Frank Dellaert + */ + +// For an explanation of these headers, see SFMExample_SmartFactor.cpp +#include "SFMdata.h" +#include + +// These extra headers allow us a LM outer loop with PCG linear solver (inner loop) +#include +#include +#include + +using namespace std; +using namespace gtsam; + +// Make the typename short so it looks much cleaner +typedef gtsam::SmartProjectionPoseFactor SmartFactor; + +/* ************************************************************************* */ +int main(int argc, char* argv[]) { + + // Define the camera calibration parameters + Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); + + // Define the camera observation noise model + noiseModel::Isotropic::shared_ptr measurementNoise = + noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v + + // Create the set of ground-truth landmarks and poses + vector points = createPoints(); + vector poses = createPoses(); + + // Create a factor graph + NonlinearFactorGraph graph; + + // Simulated measurements from each camera pose, adding them to the factor graph + for (size_t j = 0; j < points.size(); ++j) { + + // every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements. + SmartFactor::shared_ptr smartfactor(new SmartFactor()); + + for (size_t i = 0; i < poses.size(); ++i) { + + // generate the 2D measurement + SimpleCamera camera(poses[i], *K); + Point2 measurement = camera.project(points[j]); + + // call add() function to add measurement into a single factor, here we need to add: + smartfactor->add(measurement, i, measurementNoise, K); + } + + // insert the smart factor in the graph + graph.push_back(smartfactor); + } + + // Add a prior on pose x0. This indirectly specifies where the origin is. + // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw + noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas( + (Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); + graph.push_back(PriorFactor(0, poses[0], poseNoise)); + + // Fix the scale ambiguity by adding a prior + graph.push_back(PriorFactor(1, poses[1], poseNoise)); + + // Create the initial estimate to the solution + Values initialEstimate; + Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)); + for (size_t i = 0; i < poses.size(); ++i) + initialEstimate.insert(i, poses[i].compose(delta)); + + // We will use LM in the outer optimization loop, but by specifying "Iterative" below + // We indicate that an iterative linear solver should be used. + // In addition, the *type* of the iterativeParams decides on the type of + // iterative solver, in this case the SPCG (subgraph PCG) + LevenbergMarquardtParams parameters; + parameters.linearSolverType = NonlinearOptimizerParams::Iterative; + PCGSolverParameters::shared_ptr pcg = + boost::make_shared(); + pcg->preconditioner_ = + boost::make_shared(); + parameters.iterativeParams = pcg; + + LevenbergMarquardtOptimizer Optimizer(graph, initialEstimate, parameters); + Values result = Optimizer.optimize(); + + // Display result as in SFMExample_SmartFactor.run + result.print("Final results:\n"); + Values landmark_result; + for (size_t j = 0; j < points.size(); ++j) { + SmartFactor::shared_ptr smart = // + boost::dynamic_pointer_cast(graph[j]); + if (smart) { + boost::optional point = smart->point(result); + if (point) // ignore if boost::optional return NULL + landmark_result.insert(j, *point); + } + } + + landmark_result.print("Landmark results:\n"); + + return 0; +} +/* ************************************************************************* */ +