improve the gaussian mixture model tests
parent
3dab868ef0
commit
088f1f04bb
|
@ -200,6 +200,42 @@ TEST(GaussianMixtureFactor, Error) {
|
||||||
4.0, mixtureFactor.error({continuousValues, discreteValues}), 1e-9);
|
4.0, mixtureFactor.error({continuousValues, discreteValues}), 1e-9);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
namespace test_gmm {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Function to compute P(m=1|z). For P(m=0|z), swap `mus and sigmas.
|
||||||
|
* Follows equation 7.108 since it is more generic.
|
||||||
|
*/
|
||||||
|
double sigmoid(double mu0, double mu1, double sigma0, double sigma1, double z) {
|
||||||
|
double x1 = ((z - mu0) / sigma0), x2 = ((z - mu1) / sigma1);
|
||||||
|
double d = std::sqrt(sigma0 * sigma0) / std::sqrt(sigma1 * sigma1);
|
||||||
|
double e = d * std::exp(-0.5 * (x1 * x1 - x2 * x2));
|
||||||
|
return 1 / (1 + e);
|
||||||
|
};
|
||||||
|
|
||||||
|
HybridBayesNet GetGaussianMixtureModel(double mu0, double mu1, double sigma0,
|
||||||
|
double sigma1) {
|
||||||
|
DiscreteKey m(M(0), 2);
|
||||||
|
Key z = Z(0);
|
||||||
|
|
||||||
|
auto model0 = noiseModel::Isotropic::Sigma(1, sigma0);
|
||||||
|
auto model1 = noiseModel::Isotropic::Sigma(1, sigma1);
|
||||||
|
|
||||||
|
auto c0 = make_shared<GaussianConditional>(z, Vector1(mu0), I_1x1, model0),
|
||||||
|
c1 = make_shared<GaussianConditional>(z, Vector1(mu1), I_1x1, model1);
|
||||||
|
|
||||||
|
auto gm = new GaussianMixture({z}, {}, {m}, {c0, c1});
|
||||||
|
auto mixing = new DiscreteConditional(m, "0.5/0.5");
|
||||||
|
|
||||||
|
HybridBayesNet hbn;
|
||||||
|
hbn.emplace_back(gm);
|
||||||
|
hbn.emplace_back(mixing);
|
||||||
|
|
||||||
|
return hbn;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace test_gmm
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
/**
|
/**
|
||||||
* Test a simple Gaussian Mixture Model represented as P(m)P(z|m)
|
* Test a simple Gaussian Mixture Model represented as P(m)P(z|m)
|
||||||
|
@ -211,6 +247,8 @@ TEST(GaussianMixtureFactor, Error) {
|
||||||
* which represents a sigmoid function.
|
* which represents a sigmoid function.
|
||||||
*/
|
*/
|
||||||
TEST(GaussianMixtureFactor, GaussianMixtureModel) {
|
TEST(GaussianMixtureFactor, GaussianMixtureModel) {
|
||||||
|
using namespace test_gmm;
|
||||||
|
|
||||||
double mu0 = 1.0, mu1 = 3.0;
|
double mu0 = 1.0, mu1 = 3.0;
|
||||||
double sigma = 2.0;
|
double sigma = 2.0;
|
||||||
auto model = noiseModel::Isotropic::Sigma(1, sigma);
|
auto model = noiseModel::Isotropic::Sigma(1, sigma);
|
||||||
|
@ -218,28 +256,52 @@ TEST(GaussianMixtureFactor, GaussianMixtureModel) {
|
||||||
DiscreteKey m(M(0), 2);
|
DiscreteKey m(M(0), 2);
|
||||||
Key z = Z(0);
|
Key z = Z(0);
|
||||||
|
|
||||||
auto c0 = make_shared<GaussianConditional>(z, Vector1(mu0), I_1x1, model),
|
auto hbn = GetGaussianMixtureModel(mu0, mu1, sigma, sigma);
|
||||||
c1 = make_shared<GaussianConditional>(z, Vector1(mu1), I_1x1, model);
|
|
||||||
|
|
||||||
auto gm = new GaussianMixture({z}, {}, {m}, {c0, c1});
|
|
||||||
auto mixing = new DiscreteConditional(m, "0.5/0.5");
|
|
||||||
|
|
||||||
HybridBayesNet hbn;
|
|
||||||
hbn.emplace_back(gm);
|
|
||||||
hbn.emplace_back(mixing);
|
|
||||||
|
|
||||||
// The result should be a sigmoid.
|
// The result should be a sigmoid.
|
||||||
// So should be m = 0.5 at z=3.0 - 1.0=2.0
|
// So should be P(m=1|z) = 0.5 at z=3.0 - 1.0=2.0
|
||||||
|
double midway = mu1 - mu0, lambda = 4;
|
||||||
|
{
|
||||||
VectorValues given;
|
VectorValues given;
|
||||||
given.insert(z, Vector1(mu1 - mu0));
|
given.insert(z, Vector1(midway));
|
||||||
|
|
||||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||||
|
|
||||||
|
EXPECT_DOUBLES_EQUAL(
|
||||||
|
sigmoid(mu0, mu1, sigma, sigma, midway),
|
||||||
|
bn->at(0)->asDiscrete()->operator()(DiscreteValues{{M(0), 1}}), 1e-8);
|
||||||
|
|
||||||
|
// At the halfway point between the means, we should get P(m|z)=0.5
|
||||||
HybridBayesNet expected;
|
HybridBayesNet expected;
|
||||||
expected.emplace_back(new DiscreteConditional(m, "0.5/0.5"));
|
expected.emplace_back(new DiscreteConditional(m, "0.5/0.5"));
|
||||||
|
|
||||||
EXPECT(assert_equal(expected, *bn));
|
EXPECT(assert_equal(expected, *bn));
|
||||||
|
}
|
||||||
|
{
|
||||||
|
// Shift by -lambda
|
||||||
|
VectorValues given;
|
||||||
|
given.insert(z, Vector1(midway - lambda));
|
||||||
|
|
||||||
|
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||||
|
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||||
|
|
||||||
|
EXPECT_DOUBLES_EQUAL(
|
||||||
|
sigmoid(mu0, mu1, sigma, sigma, midway - lambda),
|
||||||
|
bn->at(0)->asDiscrete()->operator()(DiscreteValues{{M(0), 1}}), 1e-8);
|
||||||
|
}
|
||||||
|
{
|
||||||
|
// Shift by lambda
|
||||||
|
VectorValues given;
|
||||||
|
given.insert(z, Vector1(midway + lambda));
|
||||||
|
|
||||||
|
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||||
|
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||||
|
|
||||||
|
EXPECT_DOUBLES_EQUAL(
|
||||||
|
sigmoid(mu0, mu1, sigma, sigma, midway + lambda),
|
||||||
|
bn->at(0)->asDiscrete()->operator()(DiscreteValues{{M(0), 1}}), 1e-8);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
@ -255,30 +317,25 @@ TEST(GaussianMixtureFactor, GaussianMixtureModel) {
|
||||||
* where m1>m0 close to 3.1333.
|
* where m1>m0 close to 3.1333.
|
||||||
*/
|
*/
|
||||||
TEST(GaussianMixtureFactor, GaussianMixtureModel2) {
|
TEST(GaussianMixtureFactor, GaussianMixtureModel2) {
|
||||||
|
using namespace test_gmm;
|
||||||
|
|
||||||
double mu0 = 1.0, mu1 = 3.0;
|
double mu0 = 1.0, mu1 = 3.0;
|
||||||
auto model0 = noiseModel::Isotropic::Sigma(1, 8.0);
|
double sigma0 = 8.0, sigma1 = 4.0;
|
||||||
auto model1 = noiseModel::Isotropic::Sigma(1, 4.0);
|
|
||||||
|
|
||||||
DiscreteKey m(M(0), 2);
|
DiscreteKey m(M(0), 2);
|
||||||
Key z = Z(0);
|
Key z = Z(0);
|
||||||
|
|
||||||
auto c0 = make_shared<GaussianConditional>(z, Vector1(mu0), I_1x1, model0),
|
auto hbn = GetGaussianMixtureModel(mu0, mu1, sigma0, sigma1);
|
||||||
c1 = make_shared<GaussianConditional>(z, Vector1(mu1), I_1x1, model1);
|
|
||||||
|
|
||||||
auto gm = new GaussianMixture({z}, {}, {m}, {c0, c1});
|
|
||||||
auto mixing = new DiscreteConditional(m, "0.5/0.5");
|
|
||||||
|
|
||||||
HybridBayesNet hbn;
|
|
||||||
hbn.emplace_back(gm);
|
|
||||||
hbn.emplace_back(mixing);
|
|
||||||
|
|
||||||
// The result should be a bell curve like function
|
// The result should be a bell curve like function
|
||||||
// with m1 > m0 close to 3.1333.
|
// with m1 > m0 close to 3.1333.
|
||||||
|
// We get 3.1333 by finding the maximum value of the function.
|
||||||
VectorValues given;
|
VectorValues given;
|
||||||
given.insert(z, Vector1(3.133));
|
given.insert(z, Vector1(3.133));
|
||||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||||
|
|
||||||
|
// regression
|
||||||
HybridBayesNet expected;
|
HybridBayesNet expected;
|
||||||
expected.emplace_back(
|
expected.emplace_back(
|
||||||
new DiscreteConditional(m, "0.325603277954/0.674396722046"));
|
new DiscreteConditional(m, "0.325603277954/0.674396722046"));
|
||||||
|
|
Loading…
Reference in New Issue