use long sequence in HybridEstimation test
parent
090cc4256b
commit
083fd21d7a
|
|
@ -72,16 +72,12 @@ Ordering getOrdering(HybridGaussianFactorGraph& factors,
|
|||
/****************************************************************************/
|
||||
// Test approximate inference with an additional pruning step.
|
||||
TEST(HybridEstimation, Incremental) {
|
||||
// size_t K = 15;
|
||||
// std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
|
||||
// 7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
|
||||
// // Ground truth discrete seq
|
||||
// std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
|
||||
// 1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
|
||||
size_t K = 4;
|
||||
std::vector<double> measurements = {0, 1, 2, 2};
|
||||
size_t K = 15;
|
||||
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
|
||||
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
|
||||
// Ground truth discrete seq
|
||||
std::vector<size_t> discrete_seq = {1, 1, 0};
|
||||
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
|
||||
1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
|
||||
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
|
||||
HybridSmoother smoother;
|
||||
HybridNonlinearFactorGraph graph;
|
||||
|
|
|
|||
Loading…
Reference in New Issue