compute logNormalizers and pass to GaussianMixtureFactor

release/4.3a0
Varun Agrawal 2024-08-22 20:32:14 -04:00
parent 03e61f459d
commit 07a0088513
3 changed files with 94 additions and 23 deletions

View File

@ -200,24 +200,27 @@ std::shared_ptr<GaussianMixtureFactor> GaussianMixture::likelihood(
const GaussianMixtureFactor::Factors likelihoods(
conditionals_, [&](const GaussianConditional::shared_ptr &conditional) {
const auto likelihood_m = conditional->likelihood(given);
const double Cgm_Kgcm =
logConstant_ - conditional->logNormalizationConstant();
if (Cgm_Kgcm == 0.0) {
return likelihood_m;
} else {
// Add a constant factor to the likelihood in case the noise models
// are not all equal.
GaussianFactorGraph gfg;
gfg.push_back(likelihood_m);
Vector c(1);
c << std::sqrt(2.0 * Cgm_Kgcm);
auto constantFactor = std::make_shared<JacobianFactor>(c);
gfg.push_back(constantFactor);
return std::make_shared<JacobianFactor>(gfg);
}
return likelihood_m;
});
// First compute all the sqrt(|2 pi Sigma|) terms
auto computeLogNormalizers = [](const GaussianFactor::shared_ptr &gf) {
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
// If we have, say, a Hessian factor, then no need to do anything
if (!jf) return 0.0;
auto model = jf->get_model();
// If there is no noise model, there is nothing to do.
if (!model) {
return 0.0;
}
return ComputeLogNormalizer(model);
};
AlgebraicDecisionTree<Key> log_normalizers =
DecisionTree<Key, double>(likelihoods, computeLogNormalizers);
return std::make_shared<GaussianMixtureFactor>(
continuousParentKeys, discreteParentKeys, likelihoods);
continuousParentKeys, discreteParentKeys, likelihoods, log_normalizers);
}
/* ************************************************************************* */

View File

@ -28,11 +28,55 @@
namespace gtsam {
/**
* @brief Helper function to augment the [A|b] matrices in the factor components
* with the normalizer values.
* This is done by storing the normalizer value in
* the `b` vector as an additional row.
*
* @param factors DecisionTree of GaussianFactor shared pointers.
* @param logNormalizers Tree of log-normalizers corresponding to each
* Gaussian factor in factors.
* @return GaussianMixtureFactor::Factors
*/
GaussianMixtureFactor::Factors augment(
const GaussianMixtureFactor::Factors &factors,
const AlgebraicDecisionTree<Key> &logNormalizers) {
// Find the minimum value so we can "proselytize" to positive values.
// Done because we can't have sqrt of negative numbers.
double min_log_normalizer = logNormalizers.min();
AlgebraicDecisionTree<Key> log_normalizers = logNormalizers.apply(
[&min_log_normalizer](double n) { return n - min_log_normalizer; });
// Finally, update the [A|b] matrices.
auto update = [&log_normalizers](
const Assignment<Key> &assignment,
const GaussianMixtureFactor::sharedFactor &gf) {
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
if (!jf) return gf;
// If the log_normalizer is 0, do nothing
if (log_normalizers(assignment) == 0.0) return gf;
GaussianFactorGraph gfg;
gfg.push_back(jf);
Vector c(1);
c << std::sqrt(log_normalizers(assignment));
auto constantFactor = std::make_shared<JacobianFactor>(c);
gfg.push_back(constantFactor);
return std::dynamic_pointer_cast<GaussianFactor>(
std::make_shared<JacobianFactor>(gfg));
};
return factors.apply(update);
}
/* *******************************************************************************/
GaussianMixtureFactor::GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors)
: Base(continuousKeys, discreteKeys), factors_(factors) {}
GaussianMixtureFactor::GaussianMixtureFactor(
const KeyVector &continuousKeys, const DiscreteKeys &discreteKeys,
const Factors &factors, const AlgebraicDecisionTree<Key> &logNormalizers)
: Base(continuousKeys, discreteKeys),
factors_(augment(factors, logNormalizers)) {}
/* *******************************************************************************/
bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
@ -120,4 +164,20 @@ double GaussianMixtureFactor::error(const HybridValues &values) const {
return gf->error(values.continuous());
}
/* *******************************************************************************/
double ComputeLogNormalizer(
const noiseModel::Gaussian::shared_ptr &noise_model) {
// Since noise models are Gaussian, we can get the logDeterminant using
// the same trick as in GaussianConditional
double logDetR = noise_model->R()
.diagonal()
.unaryExpr([](double x) { return log(x); })
.sum();
double logDeterminantSigma = -2.0 * logDetR;
size_t n = noise_model->dim();
constexpr double log2pi = 1.8378770664093454835606594728112;
return n * log2pi + logDeterminantSigma;
}
} // namespace gtsam

View File

@ -82,10 +82,14 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
* their cardinalities.
* @param factors The decision tree of Gaussian factors stored as the mixture
* density.
* @param logNormalizers Tree of log-normalizers corresponding to each
* Gaussian factor in factors.
*/
GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors);
const Factors &factors,
const AlgebraicDecisionTree<Key> &logNormalizers =
AlgebraicDecisionTree<Key>(0.0));
/**
* @brief Construct a new GaussianMixtureFactor object using a vector of
@ -94,12 +98,16 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
* @param continuousKeys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Vector of gaussian factor shared pointers.
* @param logNormalizers Tree of log-normalizers corresponding to each
* Gaussian factor in factors.
*/
GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const std::vector<sharedFactor> &factors)
const std::vector<sharedFactor> &factors,
const AlgebraicDecisionTree<Key> &logNormalizers =
AlgebraicDecisionTree<Key>(0.0))
: GaussianMixtureFactor(continuousKeys, discreteKeys,
Factors(discreteKeys, factors)) {}
Factors(discreteKeys, factors), logNormalizers) {}
/// @}
/// @name Testable