compute logNormalizers and pass to GaussianMixtureFactor
parent
03e61f459d
commit
07a0088513
|
|
@ -200,24 +200,27 @@ std::shared_ptr<GaussianMixtureFactor> GaussianMixture::likelihood(
|
||||||
const GaussianMixtureFactor::Factors likelihoods(
|
const GaussianMixtureFactor::Factors likelihoods(
|
||||||
conditionals_, [&](const GaussianConditional::shared_ptr &conditional) {
|
conditionals_, [&](const GaussianConditional::shared_ptr &conditional) {
|
||||||
const auto likelihood_m = conditional->likelihood(given);
|
const auto likelihood_m = conditional->likelihood(given);
|
||||||
const double Cgm_Kgcm =
|
|
||||||
logConstant_ - conditional->logNormalizationConstant();
|
|
||||||
if (Cgm_Kgcm == 0.0) {
|
|
||||||
return likelihood_m;
|
return likelihood_m;
|
||||||
} else {
|
|
||||||
// Add a constant factor to the likelihood in case the noise models
|
|
||||||
// are not all equal.
|
|
||||||
GaussianFactorGraph gfg;
|
|
||||||
gfg.push_back(likelihood_m);
|
|
||||||
Vector c(1);
|
|
||||||
c << std::sqrt(2.0 * Cgm_Kgcm);
|
|
||||||
auto constantFactor = std::make_shared<JacobianFactor>(c);
|
|
||||||
gfg.push_back(constantFactor);
|
|
||||||
return std::make_shared<JacobianFactor>(gfg);
|
|
||||||
}
|
|
||||||
});
|
});
|
||||||
|
|
||||||
|
// First compute all the sqrt(|2 pi Sigma|) terms
|
||||||
|
auto computeLogNormalizers = [](const GaussianFactor::shared_ptr &gf) {
|
||||||
|
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
|
||||||
|
// If we have, say, a Hessian factor, then no need to do anything
|
||||||
|
if (!jf) return 0.0;
|
||||||
|
|
||||||
|
auto model = jf->get_model();
|
||||||
|
// If there is no noise model, there is nothing to do.
|
||||||
|
if (!model) {
|
||||||
|
return 0.0;
|
||||||
|
}
|
||||||
|
return ComputeLogNormalizer(model);
|
||||||
|
};
|
||||||
|
|
||||||
|
AlgebraicDecisionTree<Key> log_normalizers =
|
||||||
|
DecisionTree<Key, double>(likelihoods, computeLogNormalizers);
|
||||||
return std::make_shared<GaussianMixtureFactor>(
|
return std::make_shared<GaussianMixtureFactor>(
|
||||||
continuousParentKeys, discreteParentKeys, likelihoods);
|
continuousParentKeys, discreteParentKeys, likelihoods, log_normalizers);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
|
||||||
|
|
@ -28,11 +28,55 @@
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Helper function to augment the [A|b] matrices in the factor components
|
||||||
|
* with the normalizer values.
|
||||||
|
* This is done by storing the normalizer value in
|
||||||
|
* the `b` vector as an additional row.
|
||||||
|
*
|
||||||
|
* @param factors DecisionTree of GaussianFactor shared pointers.
|
||||||
|
* @param logNormalizers Tree of log-normalizers corresponding to each
|
||||||
|
* Gaussian factor in factors.
|
||||||
|
* @return GaussianMixtureFactor::Factors
|
||||||
|
*/
|
||||||
|
GaussianMixtureFactor::Factors augment(
|
||||||
|
const GaussianMixtureFactor::Factors &factors,
|
||||||
|
const AlgebraicDecisionTree<Key> &logNormalizers) {
|
||||||
|
// Find the minimum value so we can "proselytize" to positive values.
|
||||||
|
// Done because we can't have sqrt of negative numbers.
|
||||||
|
double min_log_normalizer = logNormalizers.min();
|
||||||
|
AlgebraicDecisionTree<Key> log_normalizers = logNormalizers.apply(
|
||||||
|
[&min_log_normalizer](double n) { return n - min_log_normalizer; });
|
||||||
|
|
||||||
|
// Finally, update the [A|b] matrices.
|
||||||
|
auto update = [&log_normalizers](
|
||||||
|
const Assignment<Key> &assignment,
|
||||||
|
const GaussianMixtureFactor::sharedFactor &gf) {
|
||||||
|
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
|
||||||
|
if (!jf) return gf;
|
||||||
|
// If the log_normalizer is 0, do nothing
|
||||||
|
if (log_normalizers(assignment) == 0.0) return gf;
|
||||||
|
|
||||||
|
GaussianFactorGraph gfg;
|
||||||
|
gfg.push_back(jf);
|
||||||
|
|
||||||
|
Vector c(1);
|
||||||
|
c << std::sqrt(log_normalizers(assignment));
|
||||||
|
auto constantFactor = std::make_shared<JacobianFactor>(c);
|
||||||
|
|
||||||
|
gfg.push_back(constantFactor);
|
||||||
|
return std::dynamic_pointer_cast<GaussianFactor>(
|
||||||
|
std::make_shared<JacobianFactor>(gfg));
|
||||||
|
};
|
||||||
|
return factors.apply(update);
|
||||||
|
}
|
||||||
|
|
||||||
/* *******************************************************************************/
|
/* *******************************************************************************/
|
||||||
GaussianMixtureFactor::GaussianMixtureFactor(const KeyVector &continuousKeys,
|
GaussianMixtureFactor::GaussianMixtureFactor(
|
||||||
const DiscreteKeys &discreteKeys,
|
const KeyVector &continuousKeys, const DiscreteKeys &discreteKeys,
|
||||||
const Factors &factors)
|
const Factors &factors, const AlgebraicDecisionTree<Key> &logNormalizers)
|
||||||
: Base(continuousKeys, discreteKeys), factors_(factors) {}
|
: Base(continuousKeys, discreteKeys),
|
||||||
|
factors_(augment(factors, logNormalizers)) {}
|
||||||
|
|
||||||
/* *******************************************************************************/
|
/* *******************************************************************************/
|
||||||
bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
|
bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
|
||||||
|
|
@ -120,4 +164,20 @@ double GaussianMixtureFactor::error(const HybridValues &values) const {
|
||||||
return gf->error(values.continuous());
|
return gf->error(values.continuous());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* *******************************************************************************/
|
||||||
|
double ComputeLogNormalizer(
|
||||||
|
const noiseModel::Gaussian::shared_ptr &noise_model) {
|
||||||
|
// Since noise models are Gaussian, we can get the logDeterminant using
|
||||||
|
// the same trick as in GaussianConditional
|
||||||
|
double logDetR = noise_model->R()
|
||||||
|
.diagonal()
|
||||||
|
.unaryExpr([](double x) { return log(x); })
|
||||||
|
.sum();
|
||||||
|
double logDeterminantSigma = -2.0 * logDetR;
|
||||||
|
|
||||||
|
size_t n = noise_model->dim();
|
||||||
|
constexpr double log2pi = 1.8378770664093454835606594728112;
|
||||||
|
return n * log2pi + logDeterminantSigma;
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace gtsam
|
} // namespace gtsam
|
||||||
|
|
|
||||||
|
|
@ -82,10 +82,14 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
||||||
* their cardinalities.
|
* their cardinalities.
|
||||||
* @param factors The decision tree of Gaussian factors stored as the mixture
|
* @param factors The decision tree of Gaussian factors stored as the mixture
|
||||||
* density.
|
* density.
|
||||||
|
* @param logNormalizers Tree of log-normalizers corresponding to each
|
||||||
|
* Gaussian factor in factors.
|
||||||
*/
|
*/
|
||||||
GaussianMixtureFactor(const KeyVector &continuousKeys,
|
GaussianMixtureFactor(const KeyVector &continuousKeys,
|
||||||
const DiscreteKeys &discreteKeys,
|
const DiscreteKeys &discreteKeys,
|
||||||
const Factors &factors);
|
const Factors &factors,
|
||||||
|
const AlgebraicDecisionTree<Key> &logNormalizers =
|
||||||
|
AlgebraicDecisionTree<Key>(0.0));
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Construct a new GaussianMixtureFactor object using a vector of
|
* @brief Construct a new GaussianMixtureFactor object using a vector of
|
||||||
|
|
@ -94,12 +98,16 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
||||||
* @param continuousKeys Vector of keys for continuous factors.
|
* @param continuousKeys Vector of keys for continuous factors.
|
||||||
* @param discreteKeys Vector of discrete keys.
|
* @param discreteKeys Vector of discrete keys.
|
||||||
* @param factors Vector of gaussian factor shared pointers.
|
* @param factors Vector of gaussian factor shared pointers.
|
||||||
|
* @param logNormalizers Tree of log-normalizers corresponding to each
|
||||||
|
* Gaussian factor in factors.
|
||||||
*/
|
*/
|
||||||
GaussianMixtureFactor(const KeyVector &continuousKeys,
|
GaussianMixtureFactor(const KeyVector &continuousKeys,
|
||||||
const DiscreteKeys &discreteKeys,
|
const DiscreteKeys &discreteKeys,
|
||||||
const std::vector<sharedFactor> &factors)
|
const std::vector<sharedFactor> &factors,
|
||||||
|
const AlgebraicDecisionTree<Key> &logNormalizers =
|
||||||
|
AlgebraicDecisionTree<Key>(0.0))
|
||||||
: GaussianMixtureFactor(continuousKeys, discreteKeys,
|
: GaussianMixtureFactor(continuousKeys, discreteKeys,
|
||||||
Factors(discreteKeys, factors)) {}
|
Factors(discreteKeys, factors), logNormalizers) {}
|
||||||
|
|
||||||
/// @}
|
/// @}
|
||||||
/// @name Testable
|
/// @name Testable
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue