Massive refactor: matrices only!
parent
a5c955a44c
commit
07693337af
|
|
@ -16,28 +16,12 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/navigation/AggregateImuReadings.h>
|
||||
#include <gtsam/navigation/functors.h>
|
||||
#include <gtsam/nonlinear/ExpressionFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
|
||||
#include <boost/assign/std/list.hpp>
|
||||
|
||||
#include <cmath>
|
||||
|
||||
using namespace std;
|
||||
using namespace boost::assign;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using symbol_shorthand::T; // for theta
|
||||
using symbol_shorthand::P; // for position
|
||||
using symbol_shorthand::V; // for velocity
|
||||
|
||||
static const Symbol kBiasKey('B', 0);
|
||||
|
||||
AggregateImuReadings::AggregateImuReadings(const boost::shared_ptr<Params>& p,
|
||||
const Bias& estimatedBias)
|
||||
: p_(p),
|
||||
|
|
@ -46,18 +30,8 @@ AggregateImuReadings::AggregateImuReadings(const boost::shared_ptr<Params>& p,
|
|||
estimatedBias_(estimatedBias),
|
||||
k_(0),
|
||||
deltaTij_(0.0) {
|
||||
// Initialize values with zeros
|
||||
static const Vector3 kZero(Vector3::Zero());
|
||||
values.insert<Vector3>(T(0), kZero);
|
||||
values.insert<Vector3>(P(0), kZero);
|
||||
values.insert<Vector3>(V(0), kZero);
|
||||
values.insert<Bias>(kBiasKey, estimatedBias_);
|
||||
ttCov_.setZero();
|
||||
tpCov_.setZero();
|
||||
tvCov_.setZero();
|
||||
ppCov_.setZero();
|
||||
pvCov_.setZero();
|
||||
vvCov_.setZero();
|
||||
zeta_.setZero();
|
||||
cov_.setZero();
|
||||
}
|
||||
|
||||
SharedDiagonal AggregateImuReadings::discreteAccelerometerNoiseModel(
|
||||
|
|
@ -72,230 +46,101 @@ SharedDiagonal AggregateImuReadings::discreteGyroscopeNoiseModel(
|
|||
std::sqrt(dt));
|
||||
}
|
||||
|
||||
void AggregateImuReadings::updateEstimate(const Vector3& measuredAcc,
|
||||
const Vector3& measuredOmega,
|
||||
double dt) {
|
||||
// Get current estimates
|
||||
const Vector3 theta = values.at<Vector3>(T(k_));
|
||||
const Vector3 pos = values.at<Vector3>(P(k_));
|
||||
const Vector3 vel = values.at<Vector3>(V(k_));
|
||||
// Tangent space sugar.
|
||||
namespace sugar {
|
||||
typedef const Vector9 constV9;
|
||||
static Eigen::Block<Vector9, 3, 1> dR(Vector9& v) { return v.segment<3>(0); }
|
||||
static Eigen::Block<Vector9, 3, 1> dP(Vector9& v) { return v.segment<3>(3); }
|
||||
static Eigen::Block<Vector9, 3, 1> dV(Vector9& v) { return v.segment<3>(6); }
|
||||
static Eigen::Block<constV9, 3, 1> dR(constV9& v) { return v.segment<3>(0); }
|
||||
static Eigen::Block<constV9, 3, 1> dP(constV9& v) { return v.segment<3>(3); }
|
||||
static Eigen::Block<constV9, 3, 1> dV(constV9& v) { return v.segment<3>(6); }
|
||||
}
|
||||
|
||||
// Correct measurements
|
||||
const Vector3 correctedAcc = measuredAcc - estimatedBias_.accelerometer();
|
||||
const Vector3 correctedOmega = measuredOmega - estimatedBias_.gyroscope();
|
||||
Vector9 AggregateImuReadings::UpdateEstimate(
|
||||
const Vector9& zeta, const Vector3& correctedAcc,
|
||||
const Vector3& correctedOmega, double dt, OptionalJacobian<9, 9> A,
|
||||
OptionalJacobian<9, 3> Ba, OptionalJacobian<9, 3> Bw) {
|
||||
using namespace sugar;
|
||||
|
||||
// Calculate exact mean propagation
|
||||
Matrix3 dexp;
|
||||
const Rot3 R = Rot3::Expmap(theta, dexp);
|
||||
const Rot3 R = Rot3::Expmap(dR(zeta), dexp);
|
||||
const Matrix3 F = dexp.inverse() * dt, H = R.matrix() * dt;
|
||||
const Vector3 theta_plus = theta + F * correctedOmega;
|
||||
const Vector3 pos_plus = pos + vel * dt + H * (0.5 * dt) * correctedAcc;
|
||||
const Vector3 vel_plus = vel + H * correctedAcc;
|
||||
|
||||
// Propagate uncertainty
|
||||
// TODO(frank): specialize to diagonal and upper triangular views
|
||||
const Matrix3 w = gyroscopeNoiseModel_->covariance() / dt;
|
||||
const Matrix3 a = accelerometerNoiseModel_->covariance() / dt;
|
||||
const Matrix3 Avt = skewSymmetric(-correctedAcc * dt);
|
||||
Vector9 zeta_plus;
|
||||
dR(zeta_plus) = dR(zeta) + F * correctedOmega;
|
||||
dP(zeta_plus) = dP(zeta) + dV(zeta) * dt + H * (0.5 * dt) * correctedAcc;
|
||||
dV(zeta_plus) = dV(zeta) + H * correctedAcc;
|
||||
|
||||
#define DEBUG_COVARIANCE
|
||||
#ifdef DEBUG_COVARIANCE
|
||||
// Slow covariance calculation for debugging
|
||||
Matrix9 cov = zetaCov();
|
||||
Matrix9 A;
|
||||
A.setIdentity();
|
||||
A.block<3, 3>(6, 0) = Avt;
|
||||
A.block<3, 3>(3, 6) = I_3x3 * dt;
|
||||
Matrix93 Ba, Bw;
|
||||
Bw << F, Z_3x3, Z_3x3;
|
||||
Ba << Z_3x3, H*(dt * 0.5), H;
|
||||
cov = A * cov * A.transpose() + Bw * w * Bw.transpose() +
|
||||
Ba * a * Ba.transpose();
|
||||
assert_equal(cov, zetaCov(), 1e-2);
|
||||
#endif
|
||||
|
||||
const Matrix3 HaH = H * a * H.transpose();
|
||||
const Matrix3 temp = Avt * tvCov_ + tvCov_.transpose() * Avt.transpose();
|
||||
|
||||
tpCov_ += dt * tvCov_;
|
||||
// H**2*a*dt**2/4 + dt*vp + dt*(dt*vv + pv)
|
||||
ppCov_ += dt * (0.25 * dt * HaH + pvCov_ + pvCov_.transpose() + dt * vvCov_);
|
||||
pvCov_ += dt * (0.5 * HaH + vvCov_ + temp);
|
||||
|
||||
tvCov_ += ttCov_ * Avt.transpose();
|
||||
vvCov_ += HaH + Avt * ttCov_ * Avt.transpose() + temp;
|
||||
|
||||
ttCov_ += F * w * F.transpose();
|
||||
|
||||
#ifdef DEBUG_COVARIANCE
|
||||
assert_equal(cov, zetaCov(), 1e-2);
|
||||
#endif
|
||||
|
||||
// Add those values to estimate and linearize around them
|
||||
values.insert<Vector3>(T(k_ + 1), theta_plus);
|
||||
values.insert<Vector3>(P(k_ + 1), pos_plus);
|
||||
values.insert<Vector3>(V(k_ + 1), vel_plus);
|
||||
}
|
||||
|
||||
NonlinearFactorGraph AggregateImuReadings::createGraph(
|
||||
const Vector3_& theta_, const Vector3_& pos_, const Vector3_& vel_,
|
||||
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) const {
|
||||
NonlinearFactorGraph graph;
|
||||
Expression<Bias> bias_(kBiasKey);
|
||||
Vector3_ theta_plus_(T(k_ + 1)), pos_plus_(P(k_ + 1)), vel_plus_(V(k_ + 1));
|
||||
|
||||
Vector3_ omega_(PredictAngularVelocity(dt), theta_, theta_plus_);
|
||||
Vector3_ measuredOmega_(boost::bind(&Bias::correctGyroscope, _1, _2, _3, _4),
|
||||
bias_, omega_);
|
||||
auto gyroModel = discreteGyroscopeNoiseModel(dt);
|
||||
graph.addExpressionFactor(gyroModel, measuredOmega, measuredOmega_);
|
||||
|
||||
Vector3_ averageVelocity_(averageVelocity, vel_, vel_plus_);
|
||||
Vector3_ defect_(PositionDefect(dt), pos_, pos_plus_, averageVelocity_);
|
||||
static const auto constrModel = noiseModel::Constrained::All(3);
|
||||
static const Vector3 kZero(Vector3::Zero());
|
||||
graph.addExpressionFactor(constrModel, kZero, defect_);
|
||||
|
||||
Vector3_ acc_(PredictAcceleration(dt), vel_, vel_plus_, theta_);
|
||||
Vector3_ measuredAcc_(
|
||||
boost::bind(&Bias::correctAccelerometer, _1, _2, _3, _4), bias_, acc_);
|
||||
auto accModel = discreteAccelerometerNoiseModel(dt);
|
||||
graph.addExpressionFactor(accModel, measuredAcc, measuredAcc_);
|
||||
|
||||
return graph;
|
||||
}
|
||||
|
||||
AggregateImuReadings::SharedBayesNet AggregateImuReadings::initPosterior(
|
||||
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) {
|
||||
static const Vector3 kZero(Vector3::Zero());
|
||||
static const Vector3_ zero_(kZero);
|
||||
|
||||
// We create a factor graph and then compute P(zeta|bias)
|
||||
auto graph = createGraph(zero_, zero_, zero_, measuredAcc, measuredOmega, dt);
|
||||
|
||||
// Linearize using updated values (updateEstimate must have been called)
|
||||
auto linear_graph = graph.linearize(values);
|
||||
|
||||
// eliminate all but biases
|
||||
// NOTE(frank): After this, posterior_k_ contains P(zeta(1)|bias)
|
||||
Ordering keys = list_of(T(k_ + 1))(P(k_ + 1))(V(k_ + 1));
|
||||
return linear_graph->eliminatePartialSequential(keys, EliminateQR).first;
|
||||
}
|
||||
|
||||
AggregateImuReadings::SharedBayesNet AggregateImuReadings::updatePosterior(
|
||||
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) {
|
||||
static const Vector3 kZero(Vector3::Zero());
|
||||
static const auto constrModel = noiseModel::Constrained::All(3);
|
||||
|
||||
// We create a factor graph and then compute P(zeta|bias)
|
||||
// TODO(frank): Expmap and ExpmapDerivative are called again :-(
|
||||
auto graph = createGraph(Vector3_(T(k_)), Vector3_(P(k_)), Vector3_(V(k_)),
|
||||
measuredAcc, measuredOmega, dt);
|
||||
|
||||
// Linearize using updated values (updateEstimate must have been called)
|
||||
auto linear_graph = graph.linearize(values);
|
||||
|
||||
// add previous posterior
|
||||
for (const auto& conditional : *posterior_k_)
|
||||
linear_graph->add(boost::static_pointer_cast<GaussianFactor>(conditional));
|
||||
|
||||
// eliminate all but biases
|
||||
// TODO(frank): does not seem to eliminate in order I want. What gives?
|
||||
Ordering keys = list_of(T(k_))(P(k_))(V(k_))(T(k_ + 1))(P(k_ + 1))(V(k_ + 1));
|
||||
SharedBayesNet bayesNet =
|
||||
linear_graph->eliminatePartialSequential(keys, EliminateQR).first;
|
||||
|
||||
// The Bayes net now contains P(zeta(k)|zeta(k+1),bias) P(zeta(k+1)|bias)
|
||||
// We marginalize zeta(k) by removing the conditionals on zeta(k)
|
||||
// TODO(frank): could use erase(begin, begin+3) if order above was correct
|
||||
SharedBayesNet marginal = boost::make_shared<GaussianBayesNet>();
|
||||
for (const auto& conditional : *bayesNet) {
|
||||
Symbol symbol(conditional->front());
|
||||
if (symbol.index() > k_) marginal->push_back(conditional);
|
||||
if (A) {
|
||||
const Matrix3 Avt = skewSymmetric(-correctedAcc * dt);
|
||||
A->setIdentity();
|
||||
A->block<3, 3>(6, 0) = Avt;
|
||||
A->block<3, 3>(3, 6) = I_3x3 * dt;
|
||||
}
|
||||
if (Ba) *Ba << Z_3x3, H*(dt * 0.5), H;
|
||||
if (Bw) *Bw << F, Z_3x3, Z_3x3;
|
||||
|
||||
return marginal;
|
||||
return zeta_plus;
|
||||
}
|
||||
|
||||
void AggregateImuReadings::integrateMeasurement(const Vector3& measuredAcc,
|
||||
const Vector3& measuredOmega,
|
||||
double dt) {
|
||||
typedef map<Key, Matrix> Terms;
|
||||
// Correct measurements
|
||||
const Vector3 correctedAcc = measuredAcc - estimatedBias_.accelerometer();
|
||||
const Vector3 correctedOmega = measuredOmega - estimatedBias_.gyroscope();
|
||||
|
||||
// Do exact mean propagation
|
||||
updateEstimate(measuredAcc, measuredOmega, dt);
|
||||
Matrix9 A;
|
||||
Matrix93 Ba, Bw;
|
||||
zeta_ = UpdateEstimate(zeta_, correctedAcc, correctedOmega, dt, A, Ba, Bw);
|
||||
|
||||
// Use factor graph machinery to linearize aroud exact propagation and
|
||||
// calculate posterior density on the prediction
|
||||
if (k_ == 0)
|
||||
posterior_k_ = initPosterior(measuredAcc, measuredOmega, dt);
|
||||
else
|
||||
posterior_k_ = updatePosterior(measuredAcc, measuredOmega, dt);
|
||||
// propagate uncertainty
|
||||
// TODO(frank): specialize to diagonal and upper triangular views
|
||||
const Matrix3 w = gyroscopeNoiseModel_->covariance() / dt;
|
||||
const Matrix3 a = accelerometerNoiseModel_->covariance() / dt;
|
||||
cov_ = A * cov_ * A.transpose() + Bw * w * Bw.transpose() +
|
||||
Ba * a * Ba.transpose();
|
||||
|
||||
// increment counter and time
|
||||
k_ += 1;
|
||||
deltaTij_ += dt;
|
||||
}
|
||||
|
||||
Vector9 AggregateImuReadings::zeta() const {
|
||||
Vector9 zeta;
|
||||
zeta << values.at<Vector3>(T(k_)), values.at<Vector3>(P(k_)),
|
||||
values.at<Vector3>(V(k_));
|
||||
return zeta;
|
||||
}
|
||||
|
||||
NavState AggregateImuReadings::predict(const NavState& state_i,
|
||||
const Bias& bias_i,
|
||||
OptionalJacobian<9, 9> H1,
|
||||
OptionalJacobian<9, 6> H2) const {
|
||||
// TODO(frank): handle bias
|
||||
|
||||
// Get current estimates
|
||||
Vector3 theta = values.at<Vector3>(T(k_));
|
||||
Vector3 pos = values.at<Vector3>(P(k_));
|
||||
Vector3 vel = values.at<Vector3>(V(k_));
|
||||
using namespace sugar;
|
||||
Vector9 zeta = zeta_;
|
||||
|
||||
// Correct for initial velocity and gravity
|
||||
#if 1
|
||||
Rot3 Ri = state_i.attitude();
|
||||
Matrix3 Rit = Ri.transpose();
|
||||
Vector3 gt = deltaTij_ * p_->n_gravity;
|
||||
pos += Rit * (state_i.velocity() * deltaTij_ + 0.5 * deltaTij_ * gt);
|
||||
vel += Rit * gt;
|
||||
dP(zeta) += Rit * (state_i.velocity() * deltaTij_ + 0.5 * deltaTij_ * gt);
|
||||
dV(zeta) += Rit * gt;
|
||||
#endif
|
||||
|
||||
// Convert local coordinates to manifold near state_i
|
||||
Vector9 zeta;
|
||||
zeta << theta, pos, vel;
|
||||
return state_i.retract(zeta);
|
||||
}
|
||||
|
||||
Matrix9 AggregateImuReadings::zetaCov() const {
|
||||
Matrix9 cov;
|
||||
cov << ttCov_, tpCov_, tvCov_, //
|
||||
tpCov_.transpose(), ppCov_, pvCov_, //
|
||||
tvCov_.transpose(), pvCov_.transpose(), vvCov_;
|
||||
return cov;
|
||||
}
|
||||
|
||||
SharedGaussian AggregateImuReadings::noiseModel() const {
|
||||
Matrix9 cov;
|
||||
cov << ttCov_, tpCov_, tvCov_, //
|
||||
tpCov_.transpose(), ppCov_, pvCov_, //
|
||||
tvCov_.transpose(), pvCov_.transpose(), vvCov_;
|
||||
// Correct for application of retract, by calculating the retract derivative H
|
||||
// We have inv(Rp'Rp) = H inv(Rz'Rz) H' => Rp = Rz * inv(H)
|
||||
// From NavState::retract:
|
||||
Matrix3 D_R_theta;
|
||||
Vector3 theta = values.at<Vector3>(T(k_));
|
||||
const Matrix3 iRj = Rot3::Expmap(theta, D_R_theta).matrix();
|
||||
const Matrix3 iRj = Rot3::Expmap(theta(), D_R_theta).matrix();
|
||||
Matrix9 H;
|
||||
H << D_R_theta, Z_3x3, Z_3x3, //
|
||||
Z_3x3, iRj.transpose(), Z_3x3, //
|
||||
Z_3x3, Z_3x3, iRj.transpose();
|
||||
|
||||
Matrix9 HcH = H * cov * H.transpose();
|
||||
return noiseModel::Gaussian::Covariance(cov, false);
|
||||
Matrix9 HcH = H * cov_ * H.transpose();
|
||||
return noiseModel::Gaussian::Covariance(cov_, false);
|
||||
|
||||
// // Get covariance on zeta from Bayes Net, which stores P(zeta|bias) as a
|
||||
// // quadratic |R*zeta + S*bias -d|^2
|
||||
|
|
|
|||
|
|
@ -22,11 +22,6 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
class NonlinearFactorGraph;
|
||||
template <typename T>
|
||||
class Expression;
|
||||
typedef Expression<Vector3> Vector3_;
|
||||
|
||||
// Convert covariance to diagonal noise model, if possible, otherwise throw
|
||||
static noiseModel::Diagonal::shared_ptr Diagonal(const Matrix& covariance) {
|
||||
bool smart = true;
|
||||
|
|
@ -37,8 +32,6 @@ static noiseModel::Diagonal::shared_ptr Diagonal(const Matrix& covariance) {
|
|||
return diagonal;
|
||||
}
|
||||
|
||||
class GaussianBayesNet;
|
||||
|
||||
/**
|
||||
* Class that integrates state estimate on the manifold.
|
||||
* We integrate zeta = [theta, position, velocity]
|
||||
|
|
@ -48,7 +41,6 @@ class AggregateImuReadings {
|
|||
public:
|
||||
typedef imuBias::ConstantBias Bias;
|
||||
typedef ImuFactor::PreintegratedMeasurements::Params Params;
|
||||
typedef boost::shared_ptr<GaussianBayesNet> SharedBayesNet;
|
||||
|
||||
private:
|
||||
const boost::shared_ptr<Params> p_;
|
||||
|
|
@ -58,22 +50,17 @@ class AggregateImuReadings {
|
|||
size_t k_; ///< index/count of measurements integrated
|
||||
double deltaTij_; ///< sum of time increments
|
||||
|
||||
/// posterior on current iterate, stored as a Bayes net
|
||||
/// P(delta_zeta|estimatedBias_delta):
|
||||
SharedBayesNet posterior_k_;
|
||||
|
||||
/// Current estimate of zeta_k
|
||||
Values values;
|
||||
|
||||
/// Covariances
|
||||
Matrix3 ttCov_, tpCov_, tvCov_, //
|
||||
ppCov_, pvCov_, //
|
||||
vvCov_;
|
||||
Vector9 zeta_;
|
||||
Matrix9 cov_;
|
||||
|
||||
public:
|
||||
AggregateImuReadings(const boost::shared_ptr<Params>& p,
|
||||
const Bias& estimatedBias = Bias());
|
||||
|
||||
const Vector9& zeta() const { return zeta_; }
|
||||
const Matrix9& zetaCov() const { return cov_; }
|
||||
|
||||
// We obtain discrete-time noise models by dividing the continuous-time
|
||||
// covariances by dt:
|
||||
|
||||
|
|
@ -89,8 +76,6 @@ class AggregateImuReadings {
|
|||
void integrateMeasurement(const Vector3& measuredAcc,
|
||||
const Vector3& measuredOmega, double dt);
|
||||
|
||||
Vector9 zeta() const;
|
||||
|
||||
/// Predict state at time j
|
||||
NavState predict(const NavState& state_i, const Bias& estimatedBias_i,
|
||||
OptionalJacobian<9, 9> H1 = boost::none,
|
||||
|
|
@ -102,25 +87,13 @@ class AggregateImuReadings {
|
|||
/// @deprecated: Explicitly calculate covariance
|
||||
Matrix9 preintMeasCov() const;
|
||||
|
||||
private:
|
||||
Matrix9 zetaCov() const;
|
||||
|
||||
void updateEstimate(const Vector3& measuredAcc, const Vector3& measuredOmega,
|
||||
double dt);
|
||||
|
||||
NonlinearFactorGraph createGraph(const Vector3_& theta_,
|
||||
const Vector3_& pose_, const Vector3_& vel_,
|
||||
const Vector3& measuredAcc,
|
||||
const Vector3& measuredOmega,
|
||||
double dt) const;
|
||||
|
||||
// initialize posterior with first (corrected) IMU measurement
|
||||
SharedBayesNet initPosterior(const Vector3& measuredAcc,
|
||||
const Vector3& measuredOmega, double dt);
|
||||
|
||||
// integrate
|
||||
SharedBayesNet updatePosterior(const Vector3& measuredAcc,
|
||||
const Vector3& measuredOmega, double dt);
|
||||
Vector3 theta() const { return zeta_.head<3>(); }
|
||||
static Vector9 UpdateEstimate(const Vector9& zeta,
|
||||
const Vector3& correctedAcc,
|
||||
const Vector3& correctedOmega, double dt,
|
||||
OptionalJacobian<9, 9> A,
|
||||
OptionalJacobian<9, 3> Ba,
|
||||
OptionalJacobian<9, 3> Bw);
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -27,6 +27,18 @@ using namespace gtsam;
|
|||
|
||||
static const double kDt = 0.1;
|
||||
|
||||
static const double kGyroSigma = 0.02;
|
||||
static const double kAccelSigma = 0.1;
|
||||
|
||||
// Create default parameters with Z-down and above noise parameters
|
||||
static boost::shared_ptr<AggregateImuReadings::Params> defaultParams() {
|
||||
auto p = PreintegratedImuMeasurements::Params::MakeSharedD(10);
|
||||
p->gyroscopeCovariance = kGyroSigma * kGyroSigma * I_3x3;
|
||||
p->accelerometerCovariance = kAccelSigma * kAccelSigma * I_3x3;
|
||||
p->integrationCovariance = 0.0000001 * I_3x3;
|
||||
return p;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(AggregateImuReadings, CorrectWithExpmapDerivative1) {
|
||||
Matrix aH1, aH2;
|
||||
|
|
@ -157,6 +169,23 @@ TEST(AggregateImuReadings, PredictAcceleration2) {
|
|||
EXPECT(assert_equal(numericalDerivative33(f, vel, vel_plus, theta), aH3));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(AggregateImuReadings, UpdateEstimate) {
|
||||
AggregateImuReadings pim(defaultParams());
|
||||
Matrix9 aH1;
|
||||
Matrix93 aH2, aH3;
|
||||
boost::function<Vector9(const Vector9&, const Vector3&, const Vector3&)> f =
|
||||
boost::bind(&AggregateImuReadings::UpdateEstimate, _1, _2, _3, kDt,
|
||||
boost::none, boost::none, boost::none);
|
||||
Vector9 zeta;
|
||||
zeta << 0.1, 0.2, 0.3, 0.1, 0.2, 0.3, 0.1, 0.2, 0.3;
|
||||
const Vector3 acc(0.1, 0.2, 0.3), omega(0.1, 0.2, 0.3);
|
||||
pim.UpdateEstimate(zeta, acc, omega, kDt, aH1, aH2, aH3);
|
||||
EXPECT(assert_equal(numericalDerivative31(f, zeta, acc, omega), aH1));
|
||||
EXPECT(assert_equal(numericalDerivative32(f, zeta, acc, omega), aH2));
|
||||
EXPECT(assert_equal(numericalDerivative33(f, zeta, acc, omega), aH3));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
|||
Loading…
Reference in New Issue