Add normalization trick to sum-product.
parent
4f4c6eba7e
commit
0710a8a893
|
|
@ -210,6 +210,12 @@ namespace gtsam {
|
|||
for (auto&& factor : factors) product = (*factor) * product;
|
||||
gttoc(product);
|
||||
|
||||
// Sum all the potentials by pretending all keys are frontal:
|
||||
auto normalization = product.sum(product.size());
|
||||
|
||||
// Normalize the product factor to prevent underflow.
|
||||
product = product / (*normalization);
|
||||
|
||||
// sum out frontals, this is the factor on the separator
|
||||
gttic(sum);
|
||||
DecisionTreeFactor::shared_ptr sum = product.sum(frontalKeys);
|
||||
|
|
|
|||
|
|
@ -216,5 +216,70 @@ class TestDiscreteFactorGraph(GtsamTestCase):
|
|||
|
||||
self.assertEqual(vals, [desired_state]*num_obs)
|
||||
|
||||
def test_sumProduct_chain(self):
|
||||
"""
|
||||
Test for numerical underflow in EliminateDiscrete on long chains.
|
||||
Adapted from the toy problem of @pcl15423
|
||||
Ref: https://github.com/borglab/gtsam/issues/1448
|
||||
"""
|
||||
num_states = 3
|
||||
num_obs = 200
|
||||
desired_state = 1
|
||||
states = list(range(num_states))
|
||||
|
||||
# Helper function to mimic the behavior of gtbook.Variables discrete_series function
|
||||
def make_key(character, index, cardinality):
|
||||
symbol = Symbol(character, index)
|
||||
key = symbol.key()
|
||||
return (key, cardinality)
|
||||
|
||||
X = {index: make_key("X", index, len(states)) for index in range(num_obs)}
|
||||
Z = {index: make_key("Z", index, num_obs + 1) for index in range(num_obs)}
|
||||
graph = DiscreteFactorGraph()
|
||||
|
||||
# Mostly identity transition matrix
|
||||
transitions = np.eye(num_states)
|
||||
|
||||
# Needed otherwise mpe is always state 0?
|
||||
transitions += 0.1/(num_states)
|
||||
|
||||
transition_cpt = []
|
||||
for i in range(0, num_states):
|
||||
transition_row = "/".join([str(x) for x in transitions[i]])
|
||||
transition_cpt.append(transition_row)
|
||||
transition_cpt = " ".join(transition_cpt)
|
||||
|
||||
for i in reversed(range(1, num_obs)):
|
||||
transition_conditional = DiscreteConditional(X[i], [X[i-1]], transition_cpt)
|
||||
graph.push_back(transition_conditional)
|
||||
|
||||
# Contrived example such that the desired state gives measurements [0, num_obs) with equal probability
|
||||
# but all other states always give measurement num_obs
|
||||
obs = np.zeros((num_states, num_obs+1))
|
||||
obs[:,-1] = 1
|
||||
obs[desired_state,0: -1] = 1
|
||||
obs[desired_state,-1] = 0
|
||||
obs_cpt_list = []
|
||||
for i in range(0, num_states):
|
||||
obs_row = "/".join([str(z) for z in obs[i]])
|
||||
obs_cpt_list.append(obs_row)
|
||||
obs_cpt = " ".join(obs_cpt_list)
|
||||
|
||||
# Contrived example where each measurement is its own index
|
||||
for i in range(0, num_obs):
|
||||
obs_conditional = DiscreteConditional(Z[i], [X[i]], obs_cpt)
|
||||
factor = obs_conditional.likelihood(i)
|
||||
graph.push_back(factor)
|
||||
|
||||
mpe = graph.optimize()
|
||||
vals = [mpe[X[i][0]] for i in range(num_obs)]
|
||||
sum_product = graph.sumProduct()
|
||||
|
||||
print("This should have 9 potential assignments", sum_product.at(0))
|
||||
|
||||
print("This should have 9 potential assignments", sum_product.at(138))
|
||||
|
||||
self.assertEqual(vals, [desired_state]*num_obs)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
|
|||
Loading…
Reference in New Issue