moved GncParams to separate file, addressing comments by Frank, 1/n
parent
92ed225a55
commit
06dfeb7ac5
|
@ -29,7 +29,7 @@ class GaussNewtonOptimizer;
|
|||
*/
|
||||
class GTSAM_EXPORT GaussNewtonParams : public NonlinearOptimizerParams {
|
||||
public:
|
||||
typedef GaussNewtonOptimizer OptimizerType;
|
||||
using OptimizerType = GaussNewtonOptimizer;
|
||||
};
|
||||
|
||||
/**
|
||||
|
|
|
@ -26,129 +26,11 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
#include <gtsam/nonlinear/GncParams.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class BaseOptimizerParameters>
|
||||
class GncParams {
|
||||
public:
|
||||
/** For each parameter, specify the corresponding optimizer: e.g., GaussNewtonParams -> GaussNewtonOptimizer */
|
||||
typedef typename BaseOptimizerParameters::OptimizerType OptimizerType;
|
||||
|
||||
/** Verbosity levels */
|
||||
enum VerbosityGNC {
|
||||
SILENT = 0, SUMMARY, VALUES
|
||||
};
|
||||
|
||||
/** Choice of robust loss function for GNC */
|
||||
enum RobustLossType {
|
||||
GM /*Geman McClure*/, TLS /*Truncated least squares*/
|
||||
};
|
||||
|
||||
/// Constructor
|
||||
GncParams(const BaseOptimizerParameters& baseOptimizerParams) :
|
||||
baseOptimizerParams(baseOptimizerParams) {
|
||||
}
|
||||
|
||||
/// Default constructor
|
||||
GncParams() :
|
||||
baseOptimizerParams() {
|
||||
}
|
||||
|
||||
/// GNC parameters
|
||||
BaseOptimizerParameters baseOptimizerParams; /*optimization parameters used to solve the weighted least squares problem at each GNC iteration*/
|
||||
/// any other specific GNC parameters:
|
||||
RobustLossType lossType = TLS; /* default loss*/
|
||||
size_t maxIterations = 100; /* maximum number of iterations*/
|
||||
double barcSq = 1.0; /* a factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance*/
|
||||
double muStep = 1.4; /* multiplicative factor to reduce/increase the mu in gnc */
|
||||
double relativeCostTol = 1e-5; ///< if relative cost change is below this threshold, stop iterating
|
||||
double weightsTol = 1e-4; ///< if the weights are within weightsTol from being binary, stop iterating (only for TLS)
|
||||
VerbosityGNC verbosityGNC = SILENT; /* verbosity level */
|
||||
std::vector<size_t> knownInliers = std::vector<size_t>(); /* slots in the factor graph corresponding to measurements that we know are inliers */
|
||||
|
||||
/// Set the robust loss function to be used in GNC (chosen among the ones in RobustLossType)
|
||||
void setLossType(const RobustLossType type) {
|
||||
lossType = type;
|
||||
}
|
||||
/// Set the maximum number of iterations in GNC (changing the max nr of iters might lead to less accurate solutions and is not recommended)
|
||||
void setMaxIterations(const size_t maxIter) {
|
||||
std::cout
|
||||
<< "setMaxIterations: changing the max nr of iters might lead to less accurate solutions and is not recommended! "
|
||||
<< std::endl;
|
||||
maxIterations = maxIter;
|
||||
}
|
||||
/** Set the maximum weighted residual error for an inlier. For a factor in the form f(x) = 0.5 * || r(x) ||^2_Omega,
|
||||
* the inlier threshold is the largest value of f(x) for the corresponding measurement to be considered an inlier.
|
||||
* In other words, an inlier at x is such that 0.5 * || r(x) ||^2_Omega <= barcSq.
|
||||
* Assuming a isotropic measurement covariance sigma^2 * Identity, the cost becomes: 0.5 * 1/sigma^2 || r(x) ||^2 <= barcSq.
|
||||
* Hence || r(x) ||^2 <= 2 * barcSq * sigma^2
|
||||
* */
|
||||
void setInlierCostThreshold(const double inth) {
|
||||
barcSq = inth;
|
||||
}
|
||||
/// Set the graduated non-convexity step: at each GNC iteration, mu is updated as mu <- mu * muStep
|
||||
void setMuStep(const double step) {
|
||||
muStep = step;
|
||||
}
|
||||
/// Set the maximum relative difference in mu values to stop iterating
|
||||
void setRelativeCostTol(double value) { relativeCostTol = value;
|
||||
}
|
||||
/// Set the maximum difference between the weights and their rounding in {0,1} to stop iterating
|
||||
void setWeightsTol(double value) { weightsTol = value;
|
||||
}
|
||||
/// Set the verbosity level
|
||||
void setVerbosityGNC(const VerbosityGNC verbosity) {
|
||||
verbosityGNC = verbosity;
|
||||
}
|
||||
/** (Optional) Provide a vector of measurements that must be considered inliers. The enties in the vector
|
||||
* corresponds to the slots in the factor graph. For instance, if you have a nonlinear factor graph nfg,
|
||||
* and you provide knownIn = {0, 2, 15}, GNC will not apply outlier rejection to nfg[0], nfg[2], and nfg[15].
|
||||
* This functionality is commonly used in SLAM when one may assume the odometry is outlier free, and
|
||||
* only apply GNC to prune outliers from the loop closures
|
||||
* */
|
||||
void setKnownInliers(const std::vector<size_t>& knownIn) {
|
||||
for (size_t i = 0; i < knownIn.size(); i++)
|
||||
knownInliers.push_back(knownIn[i]);
|
||||
}
|
||||
/// equals
|
||||
bool equals(const GncParams& other, double tol = 1e-9) const {
|
||||
return baseOptimizerParams.equals(other.baseOptimizerParams)
|
||||
&& lossType == other.lossType && maxIterations == other.maxIterations
|
||||
&& std::fabs(barcSq - other.barcSq) <= tol
|
||||
&& std::fabs(muStep - other.muStep) <= tol
|
||||
&& verbosityGNC == other.verbosityGNC
|
||||
&& knownInliers == other.knownInliers;
|
||||
}
|
||||
/// print function
|
||||
void print(const std::string& str) const {
|
||||
std::cout << str << "\n";
|
||||
switch (lossType) {
|
||||
case GM:
|
||||
std::cout << "lossType: Geman McClure" << "\n";
|
||||
break;
|
||||
case TLS:
|
||||
std::cout << "lossType: Truncated Least-squares" << "\n";
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("GncParams::print: unknown loss type.");
|
||||
}
|
||||
std::cout << "maxIterations: " << maxIterations << "\n";
|
||||
std::cout << "barcSq: " << barcSq << "\n";
|
||||
std::cout << "muStep: " << muStep << "\n";
|
||||
std::cout << "relativeCostTol: " << relativeCostTol << "\n";
|
||||
std::cout << "weightsTol: " << weightsTol << "\n";
|
||||
std::cout << "verbosityGNC: " << verbosityGNC << "\n";
|
||||
for (size_t i = 0; i < knownInliers.size(); i++)
|
||||
std::cout << "knownInliers: " << knownInliers[i] << "\n";
|
||||
baseOptimizerParams.print(str);
|
||||
}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GncParameters>
|
||||
class GncOptimizer {
|
||||
|
@ -219,11 +101,11 @@ public:
|
|||
// For GM: if residual error is small, mu -> 0
|
||||
// For TLS: if residual error is small, mu -> -1
|
||||
if (mu <= 0) {
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::SUMMARY) {
|
||||
if (params_.verbosity >= GncParameters::Verbosity::SUMMARY) {
|
||||
std::cout << "GNC Optimizer stopped because maximum residual at "
|
||||
"initialization is small." << std::endl;
|
||||
}
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::VALUES) {
|
||||
if (params_.verbosity >= GncParameters::Verbosity::VALUES) {
|
||||
result.print("result\n");
|
||||
std::cout << "mu: " << mu << std::endl;
|
||||
}
|
||||
|
@ -234,7 +116,7 @@ public:
|
|||
for (iter = 0; iter < params_.maxIterations; iter++) {
|
||||
|
||||
// display info
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::VALUES) {
|
||||
if (params_.verbosity >= GncParameters::Verbosity::VALUES) {
|
||||
std::cout << "iter: " << iter << std::endl;
|
||||
result.print("result\n");
|
||||
std::cout << "mu: " << mu << std::endl;
|
||||
|
@ -259,13 +141,13 @@ public:
|
|||
prev_cost = cost;
|
||||
|
||||
// display info
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::VALUES) {
|
||||
if (params_.verbosity >= GncParameters::Verbosity::VALUES) {
|
||||
std::cout << "previous cost: " << prev_cost << std::endl;
|
||||
std::cout << "current cost: " << cost << std::endl;
|
||||
}
|
||||
}
|
||||
// display info
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::SUMMARY) {
|
||||
if (params_.verbosity >= GncParameters::Verbosity::SUMMARY) {
|
||||
std::cout << "final iterations: " << iter << std::endl;
|
||||
std::cout << "final mu: " << mu << std::endl;
|
||||
std::cout << "final weights: " << weights_ << std::endl;
|
||||
|
@ -331,7 +213,7 @@ public:
|
|||
throw std::runtime_error(
|
||||
"GncOptimizer::checkMuConvergence: called with unknown loss type.");
|
||||
}
|
||||
if (muConverged && params_.verbosityGNC >= GncParameters::VerbosityGNC::SUMMARY)
|
||||
if (muConverged && params_.verbosity >= GncParameters::Verbosity::SUMMARY)
|
||||
std::cout << "muConverged = true " << std::endl;
|
||||
return muConverged;
|
||||
}
|
||||
|
@ -339,7 +221,7 @@ public:
|
|||
/// check convergence of relative cost differences
|
||||
bool checkCostConvergence(const double cost, const double prev_cost) const {
|
||||
bool costConverged = std::fabs(cost - prev_cost) / std::max(prev_cost,1e-7) < params_.relativeCostTol;
|
||||
if (costConverged && params_.verbosityGNC >= GncParameters::VerbosityGNC::SUMMARY)
|
||||
if (costConverged && params_.verbosity >= GncParameters::Verbosity::SUMMARY)
|
||||
std::cout << "checkCostConvergence = true " << std::endl;
|
||||
return costConverged;
|
||||
}
|
||||
|
@ -364,7 +246,7 @@ public:
|
|||
throw std::runtime_error(
|
||||
"GncOptimizer::checkWeightsConvergence: called with unknown loss type.");
|
||||
}
|
||||
if (weightsConverged && params_.verbosityGNC >= GncParameters::VerbosityGNC::SUMMARY)
|
||||
if (weightsConverged && params_.verbosity >= GncParameters::Verbosity::SUMMARY)
|
||||
std::cout << "weightsConverged = true " << std::endl;
|
||||
return weightsConverged;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,151 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file GncOptimizer.h
|
||||
* @brief The GncOptimizer class
|
||||
* @author Jingnan Shi
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
*
|
||||
* Implementation of the paper: Yang, Antonante, Tzoumas, Carlone, "Graduated Non-Convexity for Robust Spatial Perception:
|
||||
* From Non-Minimal Solvers to Global Outlier Rejection", ICRA/RAL, 2020. (arxiv version: https://arxiv.org/pdf/1909.08605.pdf)
|
||||
*
|
||||
* See also:
|
||||
* Antonante, Tzoumas, Yang, Carlone, "Outlier-Robust Estimation: Hardness, Minimally-Tuned Algorithms, and Applications",
|
||||
* arxiv: https://arxiv.org/pdf/2007.15109.pdf, 2020.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class BaseOptimizerParameters>
|
||||
class GncParams {
|
||||
public:
|
||||
/** For each parameter, specify the corresponding optimizer: e.g., GaussNewtonParams -> GaussNewtonOptimizer */
|
||||
typedef typename BaseOptimizerParameters::OptimizerType OptimizerType;
|
||||
|
||||
/** Verbosity levels */
|
||||
enum Verbosity {
|
||||
SILENT = 0, SUMMARY, VALUES
|
||||
};
|
||||
|
||||
/** Choice of robust loss function for GNC */
|
||||
enum RobustLossType {
|
||||
GM /*Geman McClure*/, TLS /*Truncated least squares*/
|
||||
};
|
||||
|
||||
/// Constructor
|
||||
GncParams(const BaseOptimizerParameters& baseOptimizerParams) :
|
||||
baseOptimizerParams(baseOptimizerParams) {
|
||||
}
|
||||
|
||||
/// Default constructor
|
||||
GncParams() :
|
||||
baseOptimizerParams() {
|
||||
}
|
||||
|
||||
/// GNC parameters
|
||||
BaseOptimizerParameters baseOptimizerParams; /*optimization parameters used to solve the weighted least squares problem at each GNC iteration*/
|
||||
/// any other specific GNC parameters:
|
||||
RobustLossType lossType = TLS; /* default loss*/
|
||||
size_t maxIterations = 100; /* maximum number of iterations*/
|
||||
double barcSq = 1.0; /* a factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance*/
|
||||
double muStep = 1.4; /* multiplicative factor to reduce/increase the mu in gnc */
|
||||
double relativeCostTol = 1e-5; ///< if relative cost change is below this threshold, stop iterating
|
||||
double weightsTol = 1e-4; ///< if the weights are within weightsTol from being binary, stop iterating (only for TLS)
|
||||
Verbosity verbosity = SILENT; /* verbosity level */
|
||||
std::vector<size_t> knownInliers = std::vector<size_t>(); /* slots in the factor graph corresponding to measurements that we know are inliers */
|
||||
|
||||
/// Set the robust loss function to be used in GNC (chosen among the ones in RobustLossType)
|
||||
void setLossType(const RobustLossType type) {
|
||||
lossType = type;
|
||||
}
|
||||
/// Set the maximum number of iterations in GNC (changing the max nr of iters might lead to less accurate solutions and is not recommended)
|
||||
void setMaxIterations(const size_t maxIter) {
|
||||
std::cout
|
||||
<< "setMaxIterations: changing the max nr of iters might lead to less accurate solutions and is not recommended! "
|
||||
<< std::endl;
|
||||
maxIterations = maxIter;
|
||||
}
|
||||
/** Set the maximum weighted residual error for an inlier. For a factor in the form f(x) = 0.5 * || r(x) ||^2_Omega,
|
||||
* the inlier threshold is the largest value of f(x) for the corresponding measurement to be considered an inlier.
|
||||
* In other words, an inlier at x is such that 0.5 * || r(x) ||^2_Omega <= barcSq.
|
||||
* Assuming a isotropic measurement covariance sigma^2 * Identity, the cost becomes: 0.5 * 1/sigma^2 || r(x) ||^2 <= barcSq.
|
||||
* Hence || r(x) ||^2 <= 2 * barcSq * sigma^2
|
||||
* */
|
||||
void setInlierCostThreshold(const double inth) {
|
||||
barcSq = inth;
|
||||
}
|
||||
/// Set the graduated non-convexity step: at each GNC iteration, mu is updated as mu <- mu * muStep
|
||||
void setMuStep(const double step) {
|
||||
muStep = step;
|
||||
}
|
||||
/// Set the maximum relative difference in mu values to stop iterating
|
||||
void setRelativeCostTol(double value) { relativeCostTol = value;
|
||||
}
|
||||
/// Set the maximum difference between the weights and their rounding in {0,1} to stop iterating
|
||||
void setWeightsTol(double value) { weightsTol = value;
|
||||
}
|
||||
/// Set the verbosity level
|
||||
void setVerbosityGNC(const Verbosity verbosity) {
|
||||
verbosity = verbosity;
|
||||
}
|
||||
/** (Optional) Provide a vector of measurements that must be considered inliers. The enties in the vector
|
||||
* corresponds to the slots in the factor graph. For instance, if you have a nonlinear factor graph nfg,
|
||||
* and you provide knownIn = {0, 2, 15}, GNC will not apply outlier rejection to nfg[0], nfg[2], and nfg[15].
|
||||
* This functionality is commonly used in SLAM when one may assume the odometry is outlier free, and
|
||||
* only apply GNC to prune outliers from the loop closures
|
||||
* */
|
||||
void setKnownInliers(const std::vector<size_t>& knownIn) {
|
||||
for (size_t i = 0; i < knownIn.size(); i++)
|
||||
knownInliers.push_back(knownIn[i]);
|
||||
}
|
||||
/// equals
|
||||
bool equals(const GncParams& other, double tol = 1e-9) const {
|
||||
return baseOptimizerParams.equals(other.baseOptimizerParams)
|
||||
&& lossType == other.lossType && maxIterations == other.maxIterations
|
||||
&& std::fabs(barcSq - other.barcSq) <= tol
|
||||
&& std::fabs(muStep - other.muStep) <= tol
|
||||
&& verbosity == other.verbosity
|
||||
&& knownInliers == other.knownInliers;
|
||||
}
|
||||
/// print function
|
||||
void print(const std::string& str) const {
|
||||
std::cout << str << "\n";
|
||||
switch (lossType) {
|
||||
case GM:
|
||||
std::cout << "lossType: Geman McClure" << "\n";
|
||||
break;
|
||||
case TLS:
|
||||
std::cout << "lossType: Truncated Least-squares" << "\n";
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("GncParams::print: unknown loss type.");
|
||||
}
|
||||
std::cout << "maxIterations: " << maxIterations << "\n";
|
||||
std::cout << "barcSq: " << barcSq << "\n";
|
||||
std::cout << "muStep: " << muStep << "\n";
|
||||
std::cout << "relativeCostTol: " << relativeCostTol << "\n";
|
||||
std::cout << "weightsTol: " << weightsTol << "\n";
|
||||
std::cout << "verbosity: " << verbosity << "\n";
|
||||
for (size_t i = 0; i < knownInliers.size(); i++)
|
||||
std::cout << "knownInliers: " << knownInliers[i] << "\n";
|
||||
baseOptimizerParams.print(str);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
|
@ -42,7 +42,7 @@ public:
|
|||
|
||||
static VerbosityLM verbosityLMTranslator(const std::string &s);
|
||||
static std::string verbosityLMTranslator(VerbosityLM value);
|
||||
typedef LevenbergMarquardtOptimizer OptimizerType;
|
||||
using OptimizerType = LevenbergMarquardtOptimizer;
|
||||
|
||||
public:
|
||||
|
||||
|
|
|
@ -80,8 +80,7 @@ TEST(GncOptimizer, gncConstructor) {
|
|||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
auto gnc =
|
||||
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
||||
|
||||
|
@ -100,8 +99,7 @@ TEST(GncOptimizer, gncConstructorWithRobustGraphAsInput) {
|
|||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(
|
||||
fg_robust, initial, gncParams);
|
||||
|
||||
|
@ -119,8 +117,7 @@ TEST(GncOptimizer, initializeMu) {
|
|||
initial.insert(X(1), p0);
|
||||
|
||||
// testing GM mu initialization
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
||||
auto gnc_gm =
|
||||
|
@ -148,8 +145,7 @@ TEST(GncOptimizer, updateMuGM) {
|
|||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
||||
gncParams.setMuStep(1.4);
|
||||
|
@ -173,8 +169,7 @@ TEST(GncOptimizer, updateMuTLS) {
|
|||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setMuStep(1.4);
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::TLS);
|
||||
|
@ -195,8 +190,7 @@ TEST(GncOptimizer, checkMuConvergence) {
|
|||
initial.insert(X(1), p0);
|
||||
|
||||
{
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
||||
auto gnc =
|
||||
|
@ -206,8 +200,7 @@ TEST(GncOptimizer, checkMuConvergence) {
|
|||
CHECK(gnc.checkMuConvergence(mu));
|
||||
}
|
||||
{
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::TLS);
|
||||
auto gnc =
|
||||
|
@ -228,8 +221,7 @@ TEST(GncOptimizer, checkCostConvergence) {
|
|||
initial.insert(X(1), p0);
|
||||
|
||||
{
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setRelativeCostTol(0.49);
|
||||
auto gnc =
|
||||
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
||||
|
@ -240,8 +232,7 @@ TEST(GncOptimizer, checkCostConvergence) {
|
|||
CHECK(!gnc.checkCostConvergence(cost, prev_cost));
|
||||
}
|
||||
{
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setRelativeCostTol(0.51);
|
||||
auto gnc =
|
||||
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
||||
|
@ -263,8 +254,7 @@ TEST(GncOptimizer, checkWeightsConvergence) {
|
|||
initial.insert(X(1), p0);
|
||||
|
||||
{
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
||||
auto gnc =
|
||||
|
@ -274,8 +264,7 @@ TEST(GncOptimizer, checkWeightsConvergence) {
|
|||
CHECK(!gnc.checkWeightsConvergence(weights)); //always false for GM
|
||||
}
|
||||
{
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::TLS);
|
||||
auto gnc =
|
||||
|
@ -286,8 +275,7 @@ TEST(GncOptimizer, checkWeightsConvergence) {
|
|||
CHECK(gnc.checkWeightsConvergence(weights));
|
||||
}
|
||||
{
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::TLS);
|
||||
auto gnc =
|
||||
|
@ -298,8 +286,7 @@ TEST(GncOptimizer, checkWeightsConvergence) {
|
|||
CHECK(!gnc.checkWeightsConvergence(weights));
|
||||
}
|
||||
{
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::TLS);
|
||||
gncParams.setWeightsTol(0.1);
|
||||
|
@ -321,8 +308,7 @@ TEST(GncOptimizer, checkConvergenceTLS) {
|
|||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams;
|
||||
gncParams.setRelativeCostTol(1e-5);
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::TLS);
|
||||
|
@ -542,7 +528,7 @@ TEST(GncOptimizer, optimize) {
|
|||
// .. but graduated nonconvexity ensures both robustness and convergence in
|
||||
// the face of nonconvexity
|
||||
GncParams<GaussNewtonParams> gncParams(gnParams);
|
||||
// gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::VerbosityGNC::SUMMARY);
|
||||
// gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
|
||||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
||||
Values gnc_result = gnc.optimize();
|
||||
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
|
||||
|
@ -567,7 +553,7 @@ TEST(GncOptimizer, optimizeWithKnownInliers) {
|
|||
gncParams.setKnownInliers(knownInliers);
|
||||
gncParams.setLossType(
|
||||
GncParams<GaussNewtonParams>::RobustLossType::GM);
|
||||
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::VerbosityGNC::SUMMARY);
|
||||
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
|
||||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
||||
|
||||
Values gnc_result = gnc.optimize();
|
||||
|
@ -584,7 +570,7 @@ TEST(GncOptimizer, optimizeWithKnownInliers) {
|
|||
gncParams.setKnownInliers(knownInliers);
|
||||
gncParams.setLossType(
|
||||
GncParams<GaussNewtonParams>::RobustLossType::TLS);
|
||||
// gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::VerbosityGNC::SUMMARY);
|
||||
// gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
|
||||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
||||
|
||||
Values gnc_result = gnc.optimize();
|
||||
|
@ -603,7 +589,7 @@ TEST(GncOptimizer, optimizeWithKnownInliers) {
|
|||
gncParams.setKnownInliers(knownInliers);
|
||||
gncParams.setLossType(
|
||||
GncParams<GaussNewtonParams>::RobustLossType::TLS);
|
||||
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::VerbosityGNC::VALUES);
|
||||
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::VALUES);
|
||||
gncParams.setInlierCostThreshold( 100.0 );
|
||||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
||||
|
||||
|
|
Loading…
Reference in New Issue