Fixed bug with shared solvers in recursive LM nonlinear optimizer
parent
7404f78bc1
commit
06b08c6f85
|
@ -292,6 +292,7 @@ namespace gtsam {
|
||||||
double next_error = error_;
|
double next_error = error_;
|
||||||
|
|
||||||
shared_values next_values = values_;
|
shared_values next_values = values_;
|
||||||
|
shared_solver solver = solver_;
|
||||||
|
|
||||||
while(true) {
|
while(true) {
|
||||||
if (verbosity >= Parameters::TRYLAMBDA) cout << "trying lambda = " << lambda << endl;
|
if (verbosity >= Parameters::TRYLAMBDA) cout << "trying lambda = " << lambda << endl;
|
||||||
|
@ -314,9 +315,9 @@ namespace gtsam {
|
||||||
if (verbosity >= Parameters::DAMPED) damped->print("damped");
|
if (verbosity >= Parameters::DAMPED) damped->print("damped");
|
||||||
|
|
||||||
// solve
|
// solve
|
||||||
S solver(*damped); // not solver_ !!
|
solver.reset(new S(*damped));
|
||||||
|
|
||||||
VectorValues delta = *solver.optimize();
|
VectorValues delta = *solver->optimize();
|
||||||
if (verbosity >= Parameters::TRYDELTA) delta.print("delta");
|
if (verbosity >= Parameters::TRYDELTA) delta.print("delta");
|
||||||
|
|
||||||
// update values
|
// update values
|
||||||
|
@ -332,8 +333,7 @@ namespace gtsam {
|
||||||
next_error = error;
|
next_error = error;
|
||||||
lambda /= factor;
|
lambda /= factor;
|
||||||
break;
|
break;
|
||||||
}
|
} else {
|
||||||
else {
|
|
||||||
// Either we're not cautious, or the same lambda was worse than the current error.
|
// Either we're not cautious, or the same lambda was worse than the current error.
|
||||||
// The more adventurous lambda was worse too, so make lambda more conservative
|
// The more adventurous lambda was worse too, so make lambda more conservative
|
||||||
// and keep the same values.
|
// and keep the same values.
|
||||||
|
@ -345,7 +345,8 @@ namespace gtsam {
|
||||||
}
|
}
|
||||||
} // end while
|
} // end while
|
||||||
|
|
||||||
return newValuesErrorLambda_(next_values, next_error, lambda);
|
return NonlinearOptimizer(graph_, next_values, next_error, ordering_, solver,
|
||||||
|
parameters_->newLambda_(lambda), dimensions_, iterations_);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
|
@ -187,13 +187,13 @@ TEST( NonlinearOptimizer, optimize_LM_recursive )
|
||||||
Point2 xstar(0,0);
|
Point2 xstar(0,0);
|
||||||
example::Values cstar;
|
example::Values cstar;
|
||||||
cstar.insert(simulated2D::PoseKey(1), xstar);
|
cstar.insert(simulated2D::PoseKey(1), xstar);
|
||||||
DOUBLES_EQUAL(0.0,fg->error(cstar),0.0);
|
EXPECT_DOUBLES_EQUAL(0.0,fg->error(cstar),0.0);
|
||||||
|
|
||||||
// test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 =
|
// test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 =
|
||||||
Point2 x0(3,3);
|
Point2 x0(3,3);
|
||||||
boost::shared_ptr<example::Values> c0(new example::Values);
|
boost::shared_ptr<example::Values> c0(new example::Values);
|
||||||
c0->insert(simulated2D::PoseKey(1), x0);
|
c0->insert(simulated2D::PoseKey(1), x0);
|
||||||
DOUBLES_EQUAL(199.0,fg->error(*c0),1e-3);
|
EXPECT_DOUBLES_EQUAL(199.0,fg->error(*c0),1e-3);
|
||||||
|
|
||||||
// optimize parameters
|
// optimize parameters
|
||||||
shared_ptr<Ordering> ord(new Ordering());
|
shared_ptr<Ordering> ord(new Ordering());
|
||||||
|
@ -207,7 +207,13 @@ TEST( NonlinearOptimizer, optimize_LM_recursive )
|
||||||
|
|
||||||
// Levenberg-Marquardt
|
// Levenberg-Marquardt
|
||||||
Optimizer actual2 = optimizer.levenbergMarquardtRecursive();
|
Optimizer actual2 = optimizer.levenbergMarquardtRecursive();
|
||||||
DOUBLES_EQUAL(0,fg->error(*(actual2.values())),tol);
|
EXPECT_DOUBLES_EQUAL(0,fg->error(*(actual2.values())),tol);
|
||||||
|
|
||||||
|
// calculate the marginal
|
||||||
|
Matrix actualCovariance; Vector mean;
|
||||||
|
boost::tie(mean, actualCovariance) = actual2.marginalCovariance("x1");
|
||||||
|
Matrix expectedCovariance = Matrix_(2,2, 8.60817108, 0.0, 0.0, 0.01);
|
||||||
|
EXPECT(assert_equal(expectedCovariance, actualCovariance, tol));
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
Loading…
Reference in New Issue