diff --git a/gtsam/geometry/Rot3.h b/gtsam/geometry/Rot3.h index de9d2b420..db5367c8f 100644 --- a/gtsam/geometry/Rot3.h +++ b/gtsam/geometry/Rot3.h @@ -430,6 +430,13 @@ namespace gtsam { */ Matrix3 transpose() const; + /** + * Normalize rotation so that its determinant is 1. + * This means either re-orthogonalizing the Matrix representation or + * normalizing the quaternion representation. + */ + Rot3 normalize(const Rot3& R) const; + /// @deprecated, this is base 1, and was just confusing Point3 column(int index) const; diff --git a/gtsam/geometry/Rot3M.cpp b/gtsam/geometry/Rot3M.cpp index 500941a16..ffc468dfc 100644 --- a/gtsam/geometry/Rot3M.cpp +++ b/gtsam/geometry/Rot3M.cpp @@ -108,9 +108,35 @@ Rot3 Rot3::RzRyRx(double x, double y, double z, OptionalJacobian<3, 1> Hx, ); } +/* ************************************************************************* */ +Rot3 Rot3::normalize(const Rot3& R) const { + /// Implementation from here: https://stackoverflow.com/a/23082112/1236990 + /// Theory: https://drive.google.com/file/d/0B9rLLz1XQKmaZTlQdV81QjNoZTA/view + + /// Essentially, this computes the orthogonalization error, distributes the + /// error to the x and y rows, and then performs a Taylor expansion to + /// orthogonalize. + + Matrix3 rot = R.matrix(), rot_new; + + if (std::fabs(rot.determinant()-1) < 1e-12) return R; + + Vector3 x = rot.block<1, 3>(0, 0), y = rot.block<1, 3>(1, 0); + double error = x.dot(y); + + Vector3 x_ort = x - (error / 2) * y, y_ort = y - (error / 2) * x; + Vector3 z_ort = x_ort.cross(y_ort); + + rot_new.block<1, 3>(0, 0) = 0.5 * (3 - x_ort.dot(x_ort)) * x_ort; + rot_new.block<1, 3>(1, 0) = 0.5 * (3 - y_ort.dot(y_ort)) * y_ort; + rot_new.block<1, 3>(2, 0) = 0.5 * (3 - z_ort.dot(z_ort)) * z_ort; + + return Rot3(rot_new); +} + /* ************************************************************************* */ Rot3 Rot3::operator*(const Rot3& R2) const { - return Rot3(rot_*R2.rot_); + return normalize(Rot3(rot_*R2.rot_)); } /* ************************************************************************* */ diff --git a/gtsam/geometry/Rot3Q.cpp b/gtsam/geometry/Rot3Q.cpp index 6e1871c64..d4400b0dc 100644 --- a/gtsam/geometry/Rot3Q.cpp +++ b/gtsam/geometry/Rot3Q.cpp @@ -86,9 +86,13 @@ namespace gtsam { gtsam::Quaternion(Eigen::AngleAxisd(x, Eigen::Vector3d::UnitX()))); } + /* ************************************************************************* */ + Rot3 Rot3::normalize(const Rot3& R) const { + return Rot3(R.quaternion_.normalized()); + } /* ************************************************************************* */ Rot3 Rot3::operator*(const Rot3& R2) const { - return Rot3(quaternion_ * R2.quaternion_); + return normalize(Rot3(quaternion_ * R2.quaternion_)); } /* ************************************************************************* */ diff --git a/gtsam/geometry/tests/testRot3.cpp b/gtsam/geometry/tests/testRot3.cpp index a7c6f5a77..e86029026 100644 --- a/gtsam/geometry/tests/testRot3.cpp +++ b/gtsam/geometry/tests/testRot3.cpp @@ -910,6 +910,26 @@ TEST(Rot3, yaw_derivative) { CHECK(assert_equal(num, calc)); } +/* ************************************************************************* */ +TEST(Rot3, determinant) { + size_t degree = 1; + Rot3 R_w0; // Zero rotation + Rot3 R_w1 = Rot3::Ry(degree * M_PI / 180); + + Rot3 R_01, R_w2; + double actual, expected = 1.0; + + for (size_t i = 2; i < 360; ++i) { + R_01 = R_w0.between(R_w1); + R_w2 = R_w1 * R_01; + R_w0 = R_w1; + R_w1 = R_w2; + actual = R_w2.matrix().determinant(); + + EXPECT_DOUBLES_EQUAL(expected, actual, 1e-7); + } +} + /* ************************************************************************* */ int main() { TestResult tr;