add the execution time test

release/4.3a0
Viorela Ila 2009-10-24 14:09:30 +00:00
parent ebd6fb96d8
commit 06a7898da2
1 changed files with 93 additions and 0 deletions

93
matlab/test_time.m Normal file
View File

@ -0,0 +1,93 @@
% Set up a small SLAM example in MATLAB to test the execution time
clear;
%Parameters
noRuns=100;
steps=1;
m = 5;
velocity=1;
time_qr=[];
time_gtsam=[];
for steps=1:noRuns
%figure(1);clf;
% robot moves in the world
trajectory = walk([0.1,0.1],velocity,m);
mappingArea=max(trajectory,[],2);
%plot(trajectory(1,:),trajectory(2,:),'b+'); hold on;
visibilityTh=sqrt(mappingArea(1)^2+mappingArea(2)^2)/m; %distance between poses
% Set up the map
map = create_landmarks(visibilityTh, mappingArea,steps);
%plot(map(1,:), map(2,:),'g.');
%axis([0 mappingArea(1) 0 mappingArea(2)]); axis square;
n=size(map,1)*size(map,2);
% Check visibility and plot this on the problem figure
visibilityTh=visibilityTh+steps;
visibility = create_visibility(map, trajectory,visibilityTh);
%gplot(visibility,[map trajectory]');
% simulate the measurements
measurement_sigma = 1;
odo_sigma = 0.1;
[measurements, odometry] = simulate_measurements(map, trajectory, visibility, measurement_sigma, odo_sigma);
% % create a configuration of all zeroes
config = create_config(n,m);
% create the factor graph
linearFactorGraph = create_linear_factor_graph(config, measurements, odometry, measurement_sigma, odo_sigma, n);
%
% create an ordering
ord = create_ordering(n,m);
% show the matrix
% figure(3); clf;
[A_dense,b] = linearFactorGraph.matrix(ord);
A=sparse(A_dense);
size(A)
%spy(A);
%time qr
ck=cputime;
R_qr = qr(A);
time_qr=[time_qr,(cputime-ck)];
%figure(2)
%clf
%spy(R_qr);
% eliminate with that ordering
%time gt_sam
ck=cputime;
BayesNet = linearFactorGraph.eliminate(ord);
time_gtsam=[time_gtsam,(cputime-ck)];
clear trajectory visibility linearFactorGraph measurements odometry;
m = m+5;
velocity=velocity+1;
steps=steps+1;
end
plot(time_qr,'r');hold on;
plot(time_gtsam,'b');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % show the eliminated matrix
% figure(4); clf;
% [R,d] = BayesNet.matrix();
% spy(R);
%
% % optimize in the BayesNet
% optimal = BayesNet.optimize;
%
% % plot the solution
% figure(5);clf;
% plot_config(optimal,n,m);hold on
% plot(trajectory(1,:),trajectory(2,:),'b+');
% plot(map(1,:), map(2,:),'g.');
% axis([0 10 0 10]);axis square;