Merge pull request #1960 from borglab/table-factor-fixes

release/4.3a0
Varun Agrawal 2025-01-02 16:43:14 -05:00 committed by GitHub
commit 05d8030af4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 55 additions and 9 deletions

View File

@ -87,7 +87,15 @@ static Eigen::SparseVector<double> ComputeSparseTable(
}); });
sparseTable.reserve(nrValues); sparseTable.reserve(nrValues);
std::set<Key> allKeys(dt.keys().begin(), dt.keys().end()); KeySet allKeys(dt.keys().begin(), dt.keys().end());
// Compute denominators to be used in computing sparse table indices
std::map<Key, size_t> denominators;
double denom = sparseTable.size();
for (const DiscreteKey& dkey : dkeys) {
denom /= dkey.second;
denominators.insert(std::pair<Key, double>(dkey.first, denom));
}
/** /**
* @brief Functor which is called by the DecisionTree for each leaf. * @brief Functor which is called by the DecisionTree for each leaf.
@ -102,13 +110,13 @@ static Eigen::SparseVector<double> ComputeSparseTable(
auto op = [&](const Assignment<Key>& assignment, double p) { auto op = [&](const Assignment<Key>& assignment, double p) {
if (p > 0) { if (p > 0) {
// Get all the keys involved in this assignment // Get all the keys involved in this assignment
std::set<Key> assignmentKeys; KeySet assignmentKeys;
for (auto&& [k, _] : assignment) { for (auto&& [k, _] : assignment) {
assignmentKeys.insert(k); assignmentKeys.insert(k);
} }
// Find the keys missing in the assignment // Find the keys missing in the assignment
std::vector<Key> diff; KeyVector diff;
std::set_difference(allKeys.begin(), allKeys.end(), std::set_difference(allKeys.begin(), allKeys.end(),
assignmentKeys.begin(), assignmentKeys.end(), assignmentKeys.begin(), assignmentKeys.end(),
std::back_inserter(diff)); std::back_inserter(diff));
@ -127,12 +135,10 @@ static Eigen::SparseVector<double> ComputeSparseTable(
// Generate index and add to the sparse vector. // Generate index and add to the sparse vector.
Eigen::Index idx = 0; Eigen::Index idx = 0;
size_t previousCardinality = 1;
// We go in reverse since a DecisionTree has the highest label first // We go in reverse since a DecisionTree has the highest label first
for (auto&& it = updatedAssignment.rbegin(); for (auto&& it = updatedAssignment.rbegin();
it != updatedAssignment.rend(); it++) { it != updatedAssignment.rend(); it++) {
idx += previousCardinality * it->second; idx += it->second * denominators.at(it->first);
previousCardinality *= dt.cardinality(it->first);
} }
sparseTable.coeffRef(idx) = p; sparseTable.coeffRef(idx) = p;
} }
@ -252,9 +258,19 @@ DecisionTreeFactor TableFactor::operator*(const DecisionTreeFactor& f) const {
DecisionTreeFactor TableFactor::toDecisionTreeFactor() const { DecisionTreeFactor TableFactor::toDecisionTreeFactor() const {
DiscreteKeys dkeys = discreteKeys(); DiscreteKeys dkeys = discreteKeys();
std::vector<double> table; // If no keys, then return empty DecisionTreeFactor
for (auto i = 0; i < sparse_table_.size(); i++) { if (dkeys.size() == 0) {
table.push_back(sparse_table_.coeff(i)); AlgebraicDecisionTree<Key> tree;
// We can have an empty sparse_table_ or one with a single value.
if (sparse_table_.size() != 0) {
tree = AlgebraicDecisionTree<Key>(sparse_table_.coeff(0));
}
return DecisionTreeFactor(dkeys, tree);
}
std::vector<double> table(sparse_table_.size(), 0.0);
for (SparseIt it(sparse_table_); it; ++it) {
table[it.index()] = it.value();
} }
AlgebraicDecisionTree<Key> tree(dkeys, table); AlgebraicDecisionTree<Key> tree(dkeys, table);

View File

@ -173,6 +173,36 @@ TEST(TableFactor, Conversion) {
TableFactor tf(dtf.discreteKeys(), dtf); TableFactor tf(dtf.discreteKeys(), dtf);
EXPECT(assert_equal(dtf, tf.toDecisionTreeFactor())); EXPECT(assert_equal(dtf, tf.toDecisionTreeFactor()));
// Test for correct construction when keys are not in reverse order.
// This is possible in conditionals e.g. P(x1 | x0)
DiscreteKey X(1, 2), Y(0, 2);
DiscreteConditional dtf2(
X, {Y}, std::vector<double>{0.33333333, 0.6, 0.66666667, 0.4});
TableFactor tf2(dtf2);
// GTSAM_PRINT(dtf2);
// GTSAM_PRINT(tf2);
// GTSAM_PRINT(tf2.toDecisionTreeFactor());
// Check for ADT equality since the order of keys is irrelevant
EXPECT(assert_equal<AlgebraicDecisionTree<Key>>(dtf2,
tf2.toDecisionTreeFactor()));
}
/* ************************************************************************* */
TEST(TableFactor, Empty) {
DiscreteKey X(1, 2);
TableFactor single = *TableFactor({X}, "1 1").sum(1);
// Should not throw a segfault
EXPECT(assert_equal(*DecisionTreeFactor(X, "1 1").sum(1),
single.toDecisionTreeFactor()));
TableFactor empty = *TableFactor({X}, "0 0").sum(1);
// Should not throw a segfault
EXPECT(assert_equal(*DecisionTreeFactor(X, "0 0").sum(1),
empty.toDecisionTreeFactor()));
} }
/* ************************************************************************* */ /* ************************************************************************* */