Moved TSAMFactors.h from tsam to gtsam

release/4.3a0
dellaert 2014-05-05 10:14:36 -04:00
parent 0a5690dfb3
commit 05c1e572b6
2 changed files with 316 additions and 0 deletions

View File

@ -0,0 +1,167 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file TSAMFactors.h
* @brief TSAM 1 Factors, simpler than the hierarchical TSAM 2
* @author Frank Dellaert
* @date May 2014
*/
#pragma once
#include <gtsam/geometry/Pose2.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
namespace gtsam {
/**
* DeltaFactor: relative 2D measurement between Pose2 and Point2
*/
class DeltaFactor: public NoiseModelFactor2<Pose2, Point2> {
public:
typedef DeltaFactor This;
typedef NoiseModelFactor2<Pose2, Point2> Base;
typedef boost::shared_ptr<This> shared_ptr;
private:
Point2 measured_; ///< the measurement
public:
/// Constructor
DeltaFactor(Key i, Key j, const Point2& measured,
const SharedNoiseModel& model) :
Base(model, i, j), measured_(measured) {
}
/// Evaluate measurement error h(x)-z
Vector evaluateError(const Pose2& pose, const Point2& point,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
boost::none) const {
Point2 d = pose.transform_to(point, H1, H2);
Point2 e = measured_.between(d);
return e.vector();
}
};
/**
* DeltaFactorBase: relative 2D measurement between Pose2 and Point2, with Basenodes
*/
class DeltaFactorBase: public NoiseModelFactor4<Pose2, Pose2, Pose2, Point2> {
public:
typedef DeltaFactorBase This;
typedef NoiseModelFactor4<Pose2, Pose2, Pose2, Point2> Base;
typedef boost::shared_ptr<This> shared_ptr;
private:
Point2 measured_; ///< the measurement
public:
/// Constructor
DeltaFactorBase(Key b1, Key i, Key b2, Key j, const Point2& measured,
const SharedNoiseModel& model) :
Base(model, b1, i, b2, j), measured_(measured) {
}
/// Evaluate measurement error h(x)-z
Vector evaluateError(const Pose2& base1, const Pose2& pose,
const Pose2& base2, const Point2& point, //
boost::optional<Matrix&> H1 = boost::none, //
boost::optional<Matrix&> H2 = boost::none, //
boost::optional<Matrix&> H3 = boost::none, //
boost::optional<Matrix&> H4 = boost::none) const {
if (H1 || H2 || H3 || H4) {
// TODO use fixed-size matrices
Matrix D_pose_g_base1, D_pose_g_pose;
Pose2 pose_g = base1.compose(pose, D_pose_g_base1, D_pose_g_pose);
Matrix D_point_g_base2, D_point_g_point;
Point2 point_g = base2.transform_from(point, D_point_g_base2,
D_point_g_point);
Matrix D_e_pose_g, D_e_point_g;
Point2 d = pose_g.transform_to(point_g, D_e_pose_g, D_e_point_g);
if (H1)
*H1 = D_e_pose_g * D_pose_g_base1;
if (H2)
*H2 = D_e_pose_g * D_pose_g_pose;
if (H3)
*H3 = D_e_point_g * D_point_g_base2;
if (H4)
*H4 = D_e_point_g * D_point_g_point;
return measured_.localCoordinates(d);
} else {
Pose2 pose_g = base1.compose(pose);
Point2 point_g = base2.transform_from(point);
Point2 d = pose_g.transform_to(point_g);
return measured_.localCoordinates(d);
}
}
};
/**
* OdometryFactorBase: Pose2 odometry, with Basenodes
*/
class OdometryFactorBase: public NoiseModelFactor4<Pose2, Pose2, Pose2, Pose2> {
public:
typedef OdometryFactorBase This;
typedef NoiseModelFactor4<Pose2, Pose2, Pose2, Pose2> Base;
typedef boost::shared_ptr<This> shared_ptr;
private:
Pose2 measured_; ///< the measurement
public:
/// Constructor
OdometryFactorBase(Key b1, Key i, Key b2, Key j, const Pose2& measured,
const SharedNoiseModel& model) :
Base(model, b1, i, b2, j), measured_(measured) {
}
/// Evaluate measurement error h(x)-z
Vector evaluateError(const Pose2& base1, const Pose2& pose1,
const Pose2& base2, const Pose2& pose2, //
boost::optional<Matrix&> H1 = boost::none, //
boost::optional<Matrix&> H2 = boost::none, //
boost::optional<Matrix&> H3 = boost::none, //
boost::optional<Matrix&> H4 = boost::none) const {
if (H1 || H2 || H3 || H4) {
// TODO use fixed-size matrices
Matrix D_pose1_g_base1, D_pose1_g_pose1;
Pose2 pose1_g = base1.compose(pose1, D_pose1_g_base1, D_pose1_g_pose1);
Matrix D_pose2_g_base2, D_pose2_g_pose2;
Pose2 pose2_g = base2.compose(pose2, D_pose2_g_base2, D_pose2_g_pose2);
Matrix D_e_pose1_g, D_e_pose2_g;
Pose2 d = pose1_g.between(pose2_g, D_e_pose1_g, D_e_pose2_g);
if (H1)
*H1 = D_e_pose1_g * D_pose1_g_base1;
if (H2)
*H2 = D_e_pose1_g * D_pose1_g_pose1;
if (H3)
*H3 = D_e_pose2_g * D_pose2_g_base2;
if (H4)
*H4 = D_e_pose2_g * D_pose2_g_pose2;
return measured_.localCoordinates(d);
} else {
Pose2 pose1_g = base1.compose(pose1);
Pose2 pose2_g = base2.compose(pose2);
Pose2 d = pose1_g.between(pose2_g);
return measured_.localCoordinates(d);
}
}
};
}

View File

@ -0,0 +1,149 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testTSAMFactors.cpp
* @brief Unit tests for TSAM 1 Factors
* @author Frank Dellaert
* @date May 2014
*/
#include <gtsam_unstable/slam/TSAMFactors.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
Key i(1), j(2); // Key for pose and point
//*************************************************************************
TEST( DeltaFactor, all ) {
// Create a factor
Point2 measurement(1, 1);
static SharedNoiseModel model(noiseModel::Unit::Create(2));
DeltaFactor factor(i, j, measurement, model);
// Set the linearization point
Pose2 pose(1, 2, 0);
Point2 point(4, 11);
Vector2 expected(4 - 1 - 1, 11 - 2 - 1);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual;
Vector actual = factor.evaluateError(pose, point, H1Actual, H2Actual);
EXPECT(assert_equal(expected, actual, 1e-9));
// Use numerical derivatives to calculate the Jacobians
Matrix H1Expected, H2Expected;
H1Expected = numericalDerivative11<LieVector, Pose2>(
boost::bind(&DeltaFactor::evaluateError, &factor, _1, point, boost::none,
boost::none), pose);
H2Expected = numericalDerivative11<LieVector, Point2>(
boost::bind(&DeltaFactor::evaluateError, &factor, pose, _1, boost::none,
boost::none), point);
// Verify the Jacobians are correct
EXPECT(assert_equal(H1Expected, H1Actual, 1e-9));
EXPECT(assert_equal(H2Expected, H2Actual, 1e-9));
}
//*************************************************************************
TEST( DeltaFactorBase, all ) {
// Create a factor
Key b1(10), b2(20);
Point2 measurement(1, 1);
static SharedNoiseModel model(noiseModel::Unit::Create(2));
DeltaFactorBase factor(b1, i, b2, j, measurement, model);
// Set the linearization point
Pose2 base1, base2(1, 0, 0);
Pose2 pose(1, 2, 0);
Point2 point(4, 11);
Vector2 expected(4 + 1 - 1 - 1, 11 - 2 - 1);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual, H3Actual, H4Actual;
Vector actual = factor.evaluateError(base1, pose, base2, point, H1Actual,
H2Actual, H3Actual, H4Actual);
EXPECT(assert_equal(expected, actual, 1e-9));
// Use numerical derivatives to calculate the Jacobians
Matrix H1Expected, H2Expected, H3Expected, H4Expected;
H1Expected = numericalDerivative11<LieVector, Pose2>(
boost::bind(&DeltaFactorBase::evaluateError, &factor, _1, pose, base2,
point, boost::none, boost::none, boost::none, boost::none), base1);
H2Expected = numericalDerivative11<LieVector, Pose2>(
boost::bind(&DeltaFactorBase::evaluateError, &factor, base1, _1, base2,
point, boost::none, boost::none, boost::none, boost::none), pose);
H3Expected = numericalDerivative11<LieVector, Pose2>(
boost::bind(&DeltaFactorBase::evaluateError, &factor, base1, pose, _1,
point, boost::none, boost::none, boost::none, boost::none), base2);
H4Expected = numericalDerivative11<LieVector, Point2>(
boost::bind(&DeltaFactorBase::evaluateError, &factor, base1, pose, base2,
_1, boost::none, boost::none, boost::none, boost::none), point);
// Verify the Jacobians are correct
EXPECT(assert_equal(H1Expected, H1Actual, 1e-9));
EXPECT(assert_equal(H2Expected, H2Actual, 1e-9));
EXPECT(assert_equal(H3Expected, H3Actual, 1e-9));
EXPECT(assert_equal(H4Expected, H4Actual, 1e-9));
}
//*************************************************************************
TEST( OdometryFactorBase, all ) {
// Create a factor
Key b1(10), b2(20);
Pose2 measurement(1, 1, 0);
static SharedNoiseModel model(noiseModel::Unit::Create(2));
OdometryFactorBase factor(b1, i, b2, j, measurement, model);
// Set the linearization pose2
Pose2 base1, base2(1, 0, 0);
Pose2 pose1(1, 2, 0), pose2(4, 11, 0);
Vector3 expected(4 + 1 - 1 - 1, 11 - 2 - 1, 0);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual, H3Actual, H4Actual;
Vector actual = factor.evaluateError(base1, pose1, base2, pose2, H1Actual,
H2Actual, H3Actual, H4Actual);
EXPECT(assert_equal(expected, actual, 1e-9));
// Use numerical derivatives to calculate the Jacobians
Matrix H1Expected, H2Expected, H3Expected, H4Expected;
H1Expected = numericalDerivative11<LieVector, Pose2>(
boost::bind(&OdometryFactorBase::evaluateError, &factor, _1, pose1, base2,
pose2, boost::none, boost::none, boost::none, boost::none), base1);
H2Expected = numericalDerivative11<LieVector, Pose2>(
boost::bind(&OdometryFactorBase::evaluateError, &factor, base1, _1, base2,
pose2, boost::none, boost::none, boost::none, boost::none), pose1);
H3Expected = numericalDerivative11<LieVector, Pose2>(
boost::bind(&OdometryFactorBase::evaluateError, &factor, base1, pose1, _1,
pose2, boost::none, boost::none, boost::none, boost::none), base2);
H4Expected = numericalDerivative11<LieVector, Pose2>(
boost::bind(&OdometryFactorBase::evaluateError, &factor, base1, pose1,
base2, _1, boost::none, boost::none, boost::none, boost::none),
pose2);
// Verify the Jacobians are correct
EXPECT(assert_equal(H1Expected, H1Actual, 1e-9));
EXPECT(assert_equal(H2Expected, H2Actual, 1e-9));
EXPECT(assert_equal(H3Expected, H3Actual, 1e-9));
EXPECT(assert_equal(H4Expected, H4Actual, 1e-9));
}
//*************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//*************************************************************************