Merge pull request #1878 from borglab/cg-methods
commit
05af66296d
|
@ -43,7 +43,7 @@ static VectorValues gradientInPlace(const NonlinearFactorGraph& nfg,
|
|||
|
||||
NonlinearConjugateGradientOptimizer::NonlinearConjugateGradientOptimizer(
|
||||
const NonlinearFactorGraph& graph, const Values& initialValues,
|
||||
const Parameters& params)
|
||||
const Parameters& params, const DirectionMethod& directionMethod)
|
||||
: Base(graph, std::unique_ptr<State>(
|
||||
new State(initialValues, graph.error(initialValues)))),
|
||||
params_(params) {}
|
||||
|
@ -70,7 +70,8 @@ NonlinearConjugateGradientOptimizer::System::advance(const State& current,
|
|||
|
||||
GaussianFactorGraph::shared_ptr NonlinearConjugateGradientOptimizer::iterate() {
|
||||
const auto [newValues, dummy] = nonlinearConjugateGradient<System, Values>(
|
||||
System(graph_), state_->values, params_, true /* single iteration */);
|
||||
System(graph_), state_->values, params_, true /* single iteration */,
|
||||
directionMethod_);
|
||||
state_.reset(
|
||||
new State(newValues, graph_.error(newValues), state_->iterations + 1));
|
||||
|
||||
|
@ -81,8 +82,8 @@ GaussianFactorGraph::shared_ptr NonlinearConjugateGradientOptimizer::iterate() {
|
|||
const Values& NonlinearConjugateGradientOptimizer::optimize() {
|
||||
// Optimize until convergence
|
||||
System system(graph_);
|
||||
const auto [newValues, iterations] =
|
||||
nonlinearConjugateGradient(system, state_->values, params_, false);
|
||||
const auto [newValues, iterations] = nonlinearConjugateGradient(
|
||||
system, state_->values, params_, false, directionMethod_);
|
||||
state_.reset(
|
||||
new State(std::move(newValues), graph_.error(newValues), iterations));
|
||||
return state_->values;
|
||||
|
|
|
@ -23,6 +23,57 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/// Fletcher-Reeves formula for computing β, the direction of steepest descent.
|
||||
template <typename Gradient>
|
||||
double FletcherReeves(const Gradient ¤tGradient,
|
||||
const Gradient &prevGradient) {
|
||||
// Fletcher-Reeves: beta = g_n'*g_n/g_n-1'*g_n-1
|
||||
const double beta =
|
||||
currentGradient.dot(currentGradient) / prevGradient.dot(prevGradient);
|
||||
return beta;
|
||||
}
|
||||
|
||||
/// Polak-Ribiere formula for computing β, the direction of steepest descent.
|
||||
template <typename Gradient>
|
||||
double PolakRibiere(const Gradient ¤tGradient,
|
||||
const Gradient &prevGradient) {
|
||||
// Polak-Ribiere: beta = g_n'*(g_n-g_n-1)/g_n-1'*g_n-1
|
||||
const double beta =
|
||||
std::max(0.0, currentGradient.dot(currentGradient - prevGradient) /
|
||||
prevGradient.dot(prevGradient));
|
||||
return beta;
|
||||
}
|
||||
|
||||
/// The Hestenes-Stiefel formula for computing β,
|
||||
/// the direction of steepest descent.
|
||||
template <typename Gradient>
|
||||
double HestenesStiefel(const Gradient ¤tGradient,
|
||||
const Gradient &prevGradient,
|
||||
const Gradient &direction) {
|
||||
// Hestenes-Stiefel: beta = g_n'*(g_n-g_n-1)/(-s_n-1')*(g_n-g_n-1)
|
||||
Gradient d = currentGradient - prevGradient;
|
||||
const double beta = std::max(0.0, currentGradient.dot(d) / -direction.dot(d));
|
||||
return beta;
|
||||
}
|
||||
|
||||
/// The Dai-Yuan formula for computing β, the direction of steepest descent.
|
||||
template <typename Gradient>
|
||||
double DaiYuan(const Gradient ¤tGradient, const Gradient &prevGradient,
|
||||
const Gradient &direction) {
|
||||
// Dai-Yuan: beta = g_n'*g_n/(-s_n-1')*(g_n-g_n-1)
|
||||
const double beta =
|
||||
std::max(0.0, currentGradient.dot(currentGradient) /
|
||||
-direction.dot(currentGradient - prevGradient));
|
||||
return beta;
|
||||
}
|
||||
|
||||
enum class DirectionMethod {
|
||||
FletcherReeves,
|
||||
PolakRibiere,
|
||||
HestenesStiefel,
|
||||
DaiYuan
|
||||
};
|
||||
|
||||
/** An implementation of the nonlinear CG method using the template below */
|
||||
class GTSAM_EXPORT NonlinearConjugateGradientOptimizer
|
||||
: public NonlinearOptimizer {
|
||||
|
@ -51,14 +102,16 @@ class GTSAM_EXPORT NonlinearConjugateGradientOptimizer
|
|||
|
||||
protected:
|
||||
Parameters params_;
|
||||
DirectionMethod directionMethod_ = DirectionMethod::PolakRibiere;
|
||||
|
||||
const NonlinearOptimizerParams &_params() const override { return params_; }
|
||||
|
||||
public:
|
||||
/// Constructor
|
||||
NonlinearConjugateGradientOptimizer(const NonlinearFactorGraph &graph,
|
||||
const Values &initialValues,
|
||||
const Parameters ¶ms = Parameters());
|
||||
NonlinearConjugateGradientOptimizer(
|
||||
const NonlinearFactorGraph &graph, const Values &initialValues,
|
||||
const Parameters ¶ms = Parameters(),
|
||||
const DirectionMethod &directionMethod = DirectionMethod::PolakRibiere);
|
||||
|
||||
/// Destructor
|
||||
~NonlinearConjugateGradientOptimizer() override {}
|
||||
|
@ -140,7 +193,9 @@ double lineSearch(const S &system, const V currentValues, const W &gradient) {
|
|||
template <class S, class V>
|
||||
std::tuple<V, int> nonlinearConjugateGradient(
|
||||
const S &system, const V &initial, const NonlinearOptimizerParams ¶ms,
|
||||
const bool singleIteration, const bool gradientDescent = false) {
|
||||
const bool singleIteration,
|
||||
const DirectionMethod &directionMethod = DirectionMethod::PolakRibiere,
|
||||
const bool gradientDescent = false) {
|
||||
// GTSAM_CONCEPT_MANIFOLD_TYPE(V)
|
||||
|
||||
size_t iteration = 0;
|
||||
|
@ -177,10 +232,23 @@ std::tuple<V, int> nonlinearConjugateGradient(
|
|||
} else {
|
||||
prevGradient = currentGradient;
|
||||
currentGradient = system.gradient(currentValues);
|
||||
// Polak-Ribiere: beta = g'*(g_n-g_n-1)/g_n-1'*g_n-1
|
||||
const double beta =
|
||||
std::max(0.0, currentGradient.dot(currentGradient - prevGradient) /
|
||||
prevGradient.dot(prevGradient));
|
||||
|
||||
double beta;
|
||||
switch (directionMethod) {
|
||||
case DirectionMethod::FletcherReeves:
|
||||
beta = FletcherReeves(currentGradient, prevGradient);
|
||||
break;
|
||||
case DirectionMethod::PolakRibiere:
|
||||
beta = PolakRibiere(currentGradient, prevGradient);
|
||||
break;
|
||||
case DirectionMethod::HestenesStiefel:
|
||||
beta = HestenesStiefel(currentGradient, prevGradient, direction);
|
||||
break;
|
||||
case DirectionMethod::DaiYuan:
|
||||
beta = DaiYuan(currentGradient, prevGradient, direction);
|
||||
break;
|
||||
}
|
||||
|
||||
direction = currentGradient + (beta * direction);
|
||||
}
|
||||
|
||||
|
|
|
@ -79,6 +79,49 @@ TEST(NonlinearConjugateGradientOptimizer, Optimize) {
|
|||
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// Test different direction methods
|
||||
TEST(NonlinearConjugateGradientOptimizer, DirectionMethods) {
|
||||
const auto [graph, initialEstimate] = generateProblem();
|
||||
|
||||
NonlinearOptimizerParams param;
|
||||
param.maxIterations =
|
||||
500; /* requires a larger number of iterations to converge */
|
||||
param.verbosity = NonlinearOptimizerParams::SILENT;
|
||||
|
||||
// Fletcher-Reeves
|
||||
{
|
||||
NonlinearConjugateGradientOptimizer optimizer(
|
||||
graph, initialEstimate, param, DirectionMethod::FletcherReeves);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4);
|
||||
}
|
||||
// Polak-Ribiere
|
||||
{
|
||||
NonlinearConjugateGradientOptimizer optimizer(
|
||||
graph, initialEstimate, param, DirectionMethod::PolakRibiere);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4);
|
||||
}
|
||||
// Hestenes-Stiefel
|
||||
{
|
||||
NonlinearConjugateGradientOptimizer optimizer(
|
||||
graph, initialEstimate, param, DirectionMethod::HestenesStiefel);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4);
|
||||
}
|
||||
// Dai-Yuan
|
||||
{
|
||||
NonlinearConjugateGradientOptimizer optimizer(graph, initialEstimate, param,
|
||||
DirectionMethod::DaiYuan);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4);
|
||||
}
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
Loading…
Reference in New Issue