remove support for special EliminatePreferCholesky to deal with Indeterminant exception arising from multiplied Hessian terms of nonlinear equality constraints.
parent
da318184ae
commit
0576aac69b
|
@ -393,29 +393,6 @@ namespace gtsam {
|
|||
return false;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
boost::tuple<GaussianFactorGraph, GaussianFactorGraph, GaussianFactorGraph> GaussianFactorGraph::splitConstraints() const {
|
||||
typedef HessianFactor H;
|
||||
typedef JacobianFactor J;
|
||||
|
||||
GaussianFactorGraph hessians, jacobians, constraints;
|
||||
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, *this) {
|
||||
H::shared_ptr hessian(boost::dynamic_pointer_cast<H>(factor));
|
||||
if (hessian)
|
||||
hessians.push_back(factor);
|
||||
else {
|
||||
J::shared_ptr jacobian(boost::dynamic_pointer_cast<J>(factor));
|
||||
if (jacobian && jacobian->get_model() && jacobian->get_model()->isConstrained()) {
|
||||
constraints.push_back(jacobian);
|
||||
}
|
||||
else {
|
||||
jacobians.push_back(factor);
|
||||
}
|
||||
}
|
||||
}
|
||||
return boost::make_tuple(hessians, jacobians, constraints);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// x += alpha*A'*e
|
||||
void GaussianFactorGraph::transposeMultiplyAdd(double alpha, const Errors& e,
|
||||
|
|
|
@ -682,110 +682,10 @@ EliminatePreferCholesky(const GaussianFactorGraph& factors, const Ordering& keys
|
|||
// all factors to JacobianFactors. Otherwise, we can convert all factors
|
||||
// to HessianFactors. This is because QR can handle constrained noise
|
||||
// models but Cholesky cannot.
|
||||
|
||||
/* Currently, when eliminating a constrained variable, EliminatePreferCholesky
|
||||
* converts every other factors to JacobianFactor before doing the special QR
|
||||
* factorization for constrained variables. Unfortunately, after a constrained
|
||||
* nonlinear graph is linearized, new hessian factors from constraints, multiplied
|
||||
* with the dual variable (-lambda*\hessian{c} terms in the Lagrangian objective
|
||||
* function), might become negative definite, thus cannot be converted to JacobianFactors.
|
||||
*
|
||||
* Following EliminateCholesky, this version of EliminatePreferCholesky for
|
||||
* constrained var gathers all unconstrained factors into a big joint HessianFactor
|
||||
* before converting it into a JacobianFactor to be eliminiated by QR together with
|
||||
* the other constrained factors.
|
||||
*
|
||||
* Of course, this might not solve the non-positive-definite problem entirely,
|
||||
* because (1) the original hessian factors might be non-positive definite
|
||||
* and (2) large strange value of lambdas might cause the joint factor non-positive
|
||||
* definite [is this true?]. But at least, this will help in typical cases.
|
||||
*/
|
||||
GaussianFactorGraph hessians, jacobians, constraints;
|
||||
// factors.print("factors: ");
|
||||
boost::tie(hessians, jacobians, constraints) = factors.splitConstraints();
|
||||
// keys.print("Frontal variables to eliminate: ");
|
||||
// hessians.print("Hessians: ");
|
||||
// jacobians.print("Jacobians: ");
|
||||
// constraints.print("Constraints: ");
|
||||
|
||||
bool hasHessians = hessians.size() > 0;
|
||||
|
||||
// Add all jacobians to gather as much info as we can
|
||||
hessians.push_back(jacobians);
|
||||
|
||||
if (constraints.size()>0) {
|
||||
// // Build joint factor
|
||||
// HessianFactor::shared_ptr jointFactor;
|
||||
// try {
|
||||
// jointFactor = boost::make_shared<HessianFactor>(hessians, Scatter(factors, keys));
|
||||
// } catch(std::invalid_argument&) {
|
||||
// throw InvalidDenseElimination(
|
||||
// "EliminateCholesky was called with a request to eliminate variables that are not\n"
|
||||
// "involved in the provided factors.");
|
||||
// }
|
||||
// constraints.push_back(jointFactor);
|
||||
// return EliminateQR(constraints, keys);
|
||||
|
||||
// If there are hessian factors, turn them into conditional
|
||||
// by doing partial elimination, then use those jacobians when eliminating the constraints
|
||||
GaussianFactor::shared_ptr unconstrainedNewFactor;
|
||||
if (hessians.size() > 0) {
|
||||
bool hasSeparator = false;
|
||||
GaussianFactorGraph::Keys unconstrainedKeys = hessians.keys();
|
||||
BOOST_FOREACH(Key key, unconstrainedKeys) {
|
||||
if (find(keys.begin(), keys.end(), key) == keys.end()) {
|
||||
hasSeparator = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (hasSeparator) {
|
||||
// find frontal keys in the unconstrained factor to eliminate
|
||||
Ordering subkeys;
|
||||
BOOST_FOREACH(Key key, keys) {
|
||||
if (unconstrainedKeys.exists(key))
|
||||
subkeys.push_back(key);
|
||||
}
|
||||
GaussianConditional::shared_ptr unconstrainedConditional;
|
||||
boost::tie(unconstrainedConditional, unconstrainedNewFactor)
|
||||
= EliminateCholesky(hessians, subkeys);
|
||||
constraints.push_back(unconstrainedConditional);
|
||||
}
|
||||
else {
|
||||
if (hasHessians) {
|
||||
HessianFactor::shared_ptr jointFactor = boost::make_shared<
|
||||
HessianFactor>(hessians, Scatter(factors, keys));
|
||||
constraints.push_back(jointFactor);
|
||||
}
|
||||
else {
|
||||
constraints.push_back(hessians);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Now eliminate the constraints
|
||||
GaussianConditional::shared_ptr constrainedConditional;
|
||||
GaussianFactor::shared_ptr constrainedNewFactor;
|
||||
boost::tie(constrainedConditional, constrainedNewFactor) = EliminateQR(
|
||||
constraints, keys);
|
||||
// constraints.print("constraints: ");
|
||||
// constrainedConditional->print("constrainedConditional: ");
|
||||
// constrainedNewFactor->print("constrainedNewFactor: ");
|
||||
|
||||
if (unconstrainedNewFactor) {
|
||||
GaussianFactorGraph newFactors;
|
||||
newFactors.push_back(unconstrainedNewFactor);
|
||||
newFactors.push_back(constrainedNewFactor);
|
||||
// newFactors.print("newFactors: ");
|
||||
HessianFactor::shared_ptr newFactor(new HessianFactor(newFactors));
|
||||
return make_pair(constrainedConditional, newFactor);
|
||||
} else {
|
||||
return make_pair(constrainedConditional, constrainedNewFactor);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (hasConstraints(factors))
|
||||
return EliminateQR(factors, keys);
|
||||
else
|
||||
return EliminateCholesky(factors, keys);
|
||||
}
|
||||
}
|
||||
|
||||
} // gtsam
|
||||
|
|
Loading…
Reference in New Issue