commit
0570dea91a
|
@ -109,11 +109,10 @@ class Experiment {
|
|||
std::cout << "Smoother update: " << newFactors_.size() << std::endl;
|
||||
gttic_(SmootherUpdate);
|
||||
clock_t beforeUpdate = clock();
|
||||
auto linearized = newFactors_.linearize(initial_);
|
||||
smoother_.update(*linearized, initial_);
|
||||
smoother_.update(newFactors_, initial_, maxNrHypotheses);
|
||||
clock_t afterUpdate = clock();
|
||||
allFactors_.push_back(newFactors_);
|
||||
newFactors_.resize(0);
|
||||
clock_t afterUpdate = clock();
|
||||
return afterUpdate - beforeUpdate;
|
||||
}
|
||||
|
||||
|
@ -262,10 +261,20 @@ class Experiment {
|
|||
std::string timeFileName = "Hybrid_City10000_time.txt";
|
||||
outfileTime.open(timeFileName);
|
||||
for (auto accTime : timeList) {
|
||||
outfileTime << accTime << std::endl;
|
||||
outfileTime << accTime / CLOCKS_PER_SEC << std::endl;
|
||||
}
|
||||
outfileTime.close();
|
||||
std::cout << "Output " << timeFileName << " file." << std::endl;
|
||||
|
||||
std::ofstream timingFile;
|
||||
std::string timingFileName = "Hybrid_City10000_timing.txt";
|
||||
timingFile.open(timingFileName);
|
||||
for (size_t i = 0; i < smootherUpdateTimes.size(); i++) {
|
||||
auto p = smootherUpdateTimes.at(i);
|
||||
timingFile << p.first << ", " << p.second / CLOCKS_PER_SEC << std::endl;
|
||||
}
|
||||
timingFile.close();
|
||||
std::cout << "Wrote timing information to " << timingFileName << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -74,6 +74,8 @@ class Experiment {
|
|||
// Initialize local variables
|
||||
size_t index = 0;
|
||||
|
||||
std::vector<std::pair<size_t, double>> smootherUpdateTimes;
|
||||
|
||||
std::list<double> timeList;
|
||||
|
||||
// Set up initial prior
|
||||
|
@ -82,10 +84,15 @@ class Experiment {
|
|||
graph_.addPrior<Pose2>(X(0), priorPose, kPriorNoiseModel);
|
||||
|
||||
// Initial update
|
||||
clock_t beforeUpdate = clock();
|
||||
isam2_.update(graph_, initial_);
|
||||
results = isam2_.calculateBestEstimate();
|
||||
clock_t afterUpdate = clock();
|
||||
smootherUpdateTimes.push_back(
|
||||
std::make_pair(index, afterUpdate - beforeUpdate));
|
||||
graph_.resize(0);
|
||||
initial_.clear();
|
||||
results = isam2_.calculateBestEstimate();
|
||||
index += 1;
|
||||
|
||||
// Start main loop
|
||||
size_t keyS = 0;
|
||||
|
@ -127,10 +134,15 @@ class Experiment {
|
|||
index++;
|
||||
}
|
||||
|
||||
clock_t beforeUpdate = clock();
|
||||
isam2_.update(graph_, initial_);
|
||||
results = isam2_.calculateBestEstimate();
|
||||
clock_t afterUpdate = clock();
|
||||
smootherUpdateTimes.push_back(
|
||||
std::make_pair(index, afterUpdate - beforeUpdate));
|
||||
graph_.resize(0);
|
||||
initial_.clear();
|
||||
results = isam2_.calculateBestEstimate();
|
||||
index += 1;
|
||||
|
||||
// Print loop index and time taken in processor clock ticks
|
||||
if (index % 50 == 0 && keyS != keyT - 1) {
|
||||
|
@ -175,6 +187,16 @@ class Experiment {
|
|||
outfileTime.close();
|
||||
std::cout << "Written cumulative time to: " << timeFileName << " file."
|
||||
<< std::endl;
|
||||
|
||||
std::ofstream timingFile;
|
||||
std::string timingFileName = "ISAM2_City10000_timing.txt";
|
||||
timingFile.open(timingFileName);
|
||||
for (size_t i = 0; i < smootherUpdateTimes.size(); i++) {
|
||||
auto p = smootherUpdateTimes.at(i);
|
||||
timingFile << p.first << ", " << p.second / CLOCKS_PER_SEC << std::endl;
|
||||
}
|
||||
timingFile.close();
|
||||
std::cout << "Wrote timing information to " << timingFileName << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -547,7 +547,9 @@ namespace gtsam {
|
|||
/* ************************************************************************ */
|
||||
DiscreteFactor::shared_ptr DecisionTreeFactor::restrict(
|
||||
const DiscreteValues& assignment) const {
|
||||
throw std::runtime_error("DecisionTreeFactor::restrict not implemented");
|
||||
ADT restricted_tree = ADT::restrict(assignment);
|
||||
return std::make_shared<DecisionTreeFactor>(this->discreteKeys(),
|
||||
restricted_tree);
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
|
|
|
@ -292,13 +292,19 @@ HybridValues HybridSmoother::optimize() const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void HybridSmoother::relinearize() {
|
||||
void HybridSmoother::relinearize(const std::optional<Ordering> givenOrdering) {
|
||||
allFactors_ = allFactors_.restrict(fixedValues_);
|
||||
HybridGaussianFactorGraph::shared_ptr linearized =
|
||||
allFactors_.linearize(linearizationPoint_);
|
||||
HybridBayesNet::shared_ptr bayesNet = linearized->eliminateSequential();
|
||||
|
||||
// Compute ordering if not given
|
||||
Ordering ordering = this->maybeComputeOrdering(*linearized, givenOrdering);
|
||||
|
||||
HybridBayesNet::shared_ptr bayesNet =
|
||||
linearized->eliminateSequential(ordering);
|
||||
HybridValues delta = bayesNet->optimize();
|
||||
linearizationPoint_ = linearizationPoint_.retract(delta.continuous());
|
||||
|
||||
reInitialize(*bayesNet);
|
||||
}
|
||||
|
||||
|
|
|
@ -126,9 +126,13 @@ class GTSAM_EXPORT HybridSmoother {
|
|||
/// Optimize the hybrid Bayes Net, taking into accound fixed values.
|
||||
HybridValues optimize() const;
|
||||
|
||||
/// Relinearize the nonlinear factor graph
|
||||
/// with the latest linearization point.
|
||||
void relinearize();
|
||||
/**
|
||||
* @brief Relinearize the nonlinear factor graph with
|
||||
* the latest stored linearization point.
|
||||
*
|
||||
* @param givenOrdering An optional elimination ordering.
|
||||
*/
|
||||
void relinearize(const std::optional<Ordering> givenOrdering = {});
|
||||
|
||||
/// Return the current linearization point.
|
||||
Values linearizationPoint() const;
|
||||
|
|
|
@ -288,7 +288,8 @@ class HybridSmoother {
|
|||
std::optional<size_t> maxNrLeaves = std::nullopt,
|
||||
const std::optional<gtsam::Ordering> given_ordering = std::nullopt);
|
||||
|
||||
void relinearize();
|
||||
void relinearize(
|
||||
const std::optional<gtsam::Ordering> givenOrdering = std::nullopt);
|
||||
|
||||
gtsam::Values linearizationPoint() const;
|
||||
gtsam::HybridNonlinearFactorGraph allFactors() const;
|
||||
|
|
Loading…
Reference in New Issue