relinearizing factors corresponding to contaminated cliques

release/4.3a0
Michael Kaess 2010-01-03 04:57:35 +00:00
parent cade0e7780
commit 052149771a
2 changed files with 37 additions and 69 deletions

View File

@ -8,6 +8,8 @@
#include <boost/assign/std/list.hpp> // for operator +=
using namespace boost::assign;
#include <set>
#include "NonlinearFactorGraph.h"
#include "GaussianFactor.h"
#include "VectorConfig.h"
@ -27,14 +29,7 @@ namespace gtsam {
/** Create a Bayes Tree from a nonlinear factor graph */
template<class Conditional, class Config>
ISAM2<Conditional, Config>::ISAM2(const NonlinearFactorGraph<Config>& nlfg, const Ordering& ordering, const Config& config)
: BayesTree<Conditional>(nlfg.linearize(config).eliminate(ordering)), nonlinearFactors_(nlfg), config_(config) {
// todo - debug only
printf("constructor keys:\n");
BOOST_FOREACH(string s, nonlinearFactors_.keys()) {
printf("%s ", s.c_str());
}
printf("\n");
}
: BayesTree<Conditional>(nlfg.linearize(config).eliminate(ordering)), nonlinearFactors_(nlfg), config_(config) {}
/* ************************************************************************* */
template<class Conditional, class Config>
@ -55,88 +50,61 @@ namespace gtsam {
FactorGraph<GaussianFactor> affectedFactors;
boost::tie(affectedFactors, orphans) = this->removeTop(newFactorsLinearized);
#if 1
// find the corresponding original nonlinear factors, and relinearize them
NonlinearFactorGraph<Config> nonlinearAffectedFactors;
#if 0
// simply wrong................................................................
list<string> keys = affectedFactors.keys();
for (list<string>::iterator keyIt = keys.begin(); keyIt!=keys.end(); keyIt++) {
// affected factors in original factor graph
list<int> indices = nonlinearFactors_.factors(*keyIt);
for (list<int>::iterator indIt = indices.begin(); indIt!=indices.end(); indIt++) {
// only add factors that have not already been added
bool alreadyAdded = false;
typename NonlinearFactorGraph<Config>::iterator it;
for (it = nonlinearAffectedFactors.begin(); it!=nonlinearAffectedFactors.end(); it++) {
if (*it == nonlinearFactors_[*indIt]) alreadyAdded = true;
}
if (!alreadyAdded) nonlinearAffectedFactors.push_back(nonlinearFactors_[*indIt]);
}
}
#else
set<int> idxs; // avoid duplicates by putting index into set
BOOST_FOREACH(FactorGraph<GaussianFactor>::sharedFactor fac, affectedFactors) {
printf("XX\n");
// retrieve correspondent factor from nonlinearFactors_
Ordering keys = fac->keys();
list<int> indices = nonlinearFactors_.factors(keys.front());
BOOST_FOREACH(int idx, indices) {
BOOST_FOREACH(string s, nonlinearFactors_[idx]->keys()) {
printf("%s ", s.c_str());
}
printf(" - versus - ");
BOOST_FOREACH(string s, keys) {
printf("%s ", s.c_str());
}
printf("\n");
printf("nonlinFac\n");
nonlinearFactors_[idx]->print();
printf("fac\n");
fac->print();
// todo: for some reason, nonlinearFactors returns variables in reverse order...
Ordering other_keys = nonlinearFactors_[idx]->keys();
other_keys.reverse();
if (keys.equals(other_keys)) {
// todo: can there be duplicates? they would be added multiple times then
printf("YY\n");
nonlinearAffectedFactors.push_back(nonlinearFactors_[idx]);
BOOST_FOREACH(string key, keys) {
list<int> indices = nonlinearFactors_.factors(key);
BOOST_FOREACH(int idx, indices) {
// todo - only insert index if factor is subset of keys... not needed once we do relinearization - but then how to deal with overlap with orphans?
bool subset = true;
BOOST_FOREACH(string k, nonlinearFactors_[idx]->keys()) {
if (find(keys.begin(), keys.end(), k)==keys.end()) subset = false;
}
if (subset) {
idxs.insert(idx);
}
}
}
}
#endif
FactorGraph<GaussianFactor> factors = nonlinearAffectedFactors.linearize(config_);
// todo - debug - test:
if (factors.equals(affectedFactors)) {
printf("factors equal\n");
} else {
FactorGraph<GaussianFactor> all = nonlinearFactors_.linearize(config_);
printf("=====ALL\n");
all.print();
printf("=====ACTUAL\n");
factors.print();
printf("=====EXPECTED\n");
affectedFactors.print();
printf("=====ORPHANS\n");
orphans.print();
printf("factors NOT equal\n"); exit(1);
BOOST_FOREACH(int idx, idxs) {
nonlinearAffectedFactors.push_back(nonlinearFactors_[idx]);
}
FactorGraph<GaussianFactor> factors = nonlinearAffectedFactors.linearize(config_);
// add the new factors themselves
factors.push_back(newFactorsLinearized);
#endif
affectedFactors.push_back(newFactorsLinearized);
// create an ordering for the new and contaminated factors
Ordering ordering;
if (true) {
ordering = factors.getOrdering();
ordering = /*affectedF*/factors.getOrdering();
} else {
list<string> keys = factors.keys();
list<string> keys = /*affectedF*/factors.keys();
keys.sort(); // todo: correct sorting order?
ordering = keys;
}
// eliminate into a Bayes net
BayesNet<Conditional> bayesNet = eliminate<GaussianFactor, Conditional>(factors,ordering);
BayesNet<Conditional> bayesNet = eliminate<GaussianFactor, Conditional>(affectedFactors,ordering);
#if 1
BayesNet<Conditional> bayesNetTest = eliminate<GaussianFactor, Conditional>(factors,ordering); // todo - debug only
if (!bayesNet.equals(bayesNetTest)) {
printf("differ\n");
bayesNet.print();
bayesNetTest.print();
exit(42);
}
#endif
// insert conditionals back in, straight into the topless bayesTree
typename BayesNet<Conditional>::const_reverse_iterator rit;

View File

@ -52,7 +52,7 @@ TEST( ISAM2, ISAM2_smoother )
CHECK(assert_equal(e, optimized));
}
/* ************************************************************************* *
/* ************************************************************************* */
TEST( ISAM2, ISAM2_smoother2 )
{
// Create smoother with 7 nodes