inlined ExpmapTranslation
parent
4cbf673540
commit
04e04eed52
|
|
@ -183,16 +183,37 @@ Pose3 Pose3::Expmap(const Vector6& xi, OptionalJacobian<6, 6> Hxi) {
|
|||
// Get angular velocity omega and translational velocity v from twist xi
|
||||
const Vector3 w = xi.head<3>(), v = xi.tail<3>();
|
||||
|
||||
// Compute rotation using Expmap
|
||||
Matrix3 Jr;
|
||||
Rot3 R = Rot3::Expmap(w, Hxi ? &Jr : nullptr);
|
||||
// Instantiate functor for Dexp-related operations:
|
||||
const bool nearZero = (w.dot(w) <= 1e-5);
|
||||
const so3::DexpFunctor local(w, nearZero);
|
||||
|
||||
// Compute translation and optionally its Jacobian Q in w
|
||||
// The Jacobian in v is the right Jacobian Jr of SO(3), which we already have.
|
||||
Matrix3 Q;
|
||||
const Vector3 t = ExpmapTranslation(w, v, Hxi ? &Q : nullptr);
|
||||
// Compute rotation using Expmap
|
||||
#ifdef GTSAM_USE_QUATERNIONS
|
||||
const Rot3 R = traits<gtsam::Quaternion>::Expmap(v);
|
||||
#else
|
||||
const Rot3 R(local.expmap());
|
||||
#endif
|
||||
|
||||
// The translation t = local.leftJacobian() * v.
|
||||
// Here we call applyLeftJacobian, which is faster if you don't need
|
||||
// Jacobians, and returns Jacobian of t with respect to w if asked.
|
||||
// NOTE(Frank): t = applyLeftJacobian(v) does the same as the intuitive formulas
|
||||
// t_parallel = w * w.dot(v); // translation parallel to axis
|
||||
// w_cross_v = w.cross(v); // translation orthogonal to axis
|
||||
// t = (w_cross_v - Rot3::Expmap(w) * w_cross_v + t_parallel) / theta2;
|
||||
// but functor does not need R, deals automatically with the case where theta2
|
||||
// is near zero, and also gives us the machinery for the Jacobians.
|
||||
Matrix3 H;
|
||||
const Vector3 t = local.applyLeftJacobian(v, Hxi ? &H : nullptr);
|
||||
|
||||
if (Hxi) {
|
||||
// The Jacobian of expmap is given by the right Jacobian of SO(3):
|
||||
const Matrix3 Jr = local.rightJacobian();
|
||||
// We multiply H, the derivative of applyLeftJacobian in omega, with
|
||||
// X = Jr * Jl^{-1},
|
||||
// which translates from left to right for our right expmap convention:
|
||||
const Matrix3 X = Jr * local.leftJacobianInverse();
|
||||
const Matrix3 Q = X * H;
|
||||
*Hxi << Jr, Z_3x3, //
|
||||
Q, Jr;
|
||||
}
|
||||
|
|
@ -260,45 +281,18 @@ Matrix3 Pose3::ComputeQforExpmapDerivative(const Vector6& xi,
|
|||
double nearZeroThreshold) {
|
||||
const auto w = xi.head<3>();
|
||||
const auto v = xi.tail<3>();
|
||||
Matrix3 Q;
|
||||
ExpmapTranslation(w, v, Q, {}, nearZeroThreshold);
|
||||
return Q;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// NOTE(Frank): t = applyLeftJacobian(v) does the same as the intuitive formulas
|
||||
// t_parallel = w * w.dot(v); // translation parallel to axis
|
||||
// w_cross_v = w.cross(v); // translation orthogonal to axis
|
||||
// t = (w_cross_v - Rot3::Expmap(w) * w_cross_v + t_parallel) / theta2;
|
||||
// but functor does not need R, deals automatically with the case where theta2
|
||||
// is near zero, and also gives us the machinery for the Jacobians.
|
||||
Vector3 Pose3::ExpmapTranslation(const Vector3& w, const Vector3& v,
|
||||
OptionalJacobian<3, 3> Q,
|
||||
OptionalJacobian<3, 3> J,
|
||||
double nearZeroThreshold) {
|
||||
const double theta2 = w.dot(w);
|
||||
bool nearZero = (theta2 <= nearZeroThreshold);
|
||||
|
||||
// Instantiate functor for Dexp-related operations:
|
||||
bool nearZero = (w.dot(w) <= nearZeroThreshold);
|
||||
so3::DexpFunctor local(w, nearZero);
|
||||
|
||||
// Call applyLeftJacobian which is faster than local.leftJacobian() * v if you
|
||||
// don't need Jacobians, and returns Jacobian of t with respect to w if asked.
|
||||
// Call applyLeftJacobian to get its Jacobian
|
||||
Matrix3 H;
|
||||
Vector t = local.applyLeftJacobian(v, Q ? &H : nullptr);
|
||||
local.applyLeftJacobian(v, H);
|
||||
|
||||
// We return Jacobians for use in Expmap, so we multiply with X, that
|
||||
// translates from left to right for our right expmap convention:
|
||||
if (Q) {
|
||||
Matrix3 X = local.rightJacobian() * local.leftJacobianInverse();
|
||||
*Q = X * H;
|
||||
}
|
||||
|
||||
if (J) {
|
||||
*J = local.rightJacobian(); // = X * local.leftJacobian();
|
||||
}
|
||||
|
||||
return t;
|
||||
// Multiply with X, translates from left to right for our expmap convention:
|
||||
const Matrix3 X = local.rightJacobian() * local.leftJacobianInverse();
|
||||
return X * H;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -220,27 +220,10 @@ public:
|
|||
* (see Chirikjian11book2, pg 44, eq 10.95.
|
||||
* The closed-form formula is identical to formula 102 in Barfoot14tro where
|
||||
* Q_l of the SE3 Expmap left derivative matrix is given.
|
||||
* This is the Jacobian of ExpmapTranslation and computed there.
|
||||
*/
|
||||
static Matrix3 ComputeQforExpmapDerivative(
|
||||
const Vector6& xi, double nearZeroThreshold = 1e-5);
|
||||
|
||||
/**
|
||||
* Compute the translation part of the exponential map, with Jacobians.
|
||||
* @param w 3D angular velocity
|
||||
* @param v 3D velocity
|
||||
* @param Q Optionally, compute 3x3 Jacobian wrpt w
|
||||
* @param J Optionally, compute 3x3 Jacobian wrpt v = right Jacobian of SO(3)
|
||||
* @param nearZeroThreshold threshold for small values
|
||||
* @note This function returns Jacobians Q and J corresponding to the bottom
|
||||
* blocks of the SE(3) exponential, and translated from left to right from the
|
||||
* applyLeftJacobian Jacobians.
|
||||
*/
|
||||
static Vector3 ExpmapTranslation(const Vector3& w, const Vector3& v,
|
||||
OptionalJacobian<3, 3> Q = {},
|
||||
OptionalJacobian<3, 3> J = {},
|
||||
double nearZeroThreshold = 1e-5);
|
||||
|
||||
using LieGroup<Pose3, 6>::inverse; // version with derivative
|
||||
|
||||
/**
|
||||
|
|
|
|||
|
|
@ -117,20 +117,29 @@ NavState NavState::Expmap(const Vector9& xi, OptionalJacobian<9, 9> Hxi) {
|
|||
// Get angular velocity w and components rho (for t) and nu (for v) from xi
|
||||
Vector3 w = xi.head<3>(), rho = xi.segment<3>(3), nu = xi.tail<3>();
|
||||
|
||||
// Compute rotation using Expmap
|
||||
Matrix3 Jr;
|
||||
Rot3 R = Rot3::Expmap(w, Hxi ? &Jr : nullptr);
|
||||
// Instantiate functor for Dexp-related operations:
|
||||
const bool nearZero = (w.dot(w) <= 1e-5);
|
||||
const so3::DexpFunctor local(w, nearZero);
|
||||
|
||||
// Compute translations and optionally their Jacobians Q in w
|
||||
// The Jacobians with respect to rho and nu are equal to Jr
|
||||
Matrix3 Qt, Qv;
|
||||
Vector3 t = Pose3::ExpmapTranslation(w, rho, Hxi ? &Qt : nullptr);
|
||||
Vector3 v = Pose3::ExpmapTranslation(w, nu, Hxi ? &Qv : nullptr);
|
||||
// Compute rotation using Expmap
|
||||
#ifdef GTSAM_USE_QUATERNIONS
|
||||
const Rot3 R = traits<gtsam::Quaternion>::Expmap(v);
|
||||
#else
|
||||
const Rot3 R(local.expmap());
|
||||
#endif
|
||||
|
||||
// Compute translation and velocity. See Pose3::Expmap
|
||||
Matrix3 H_t_w, H_v_w;
|
||||
const Vector3 t = local.applyLeftJacobian(rho, Hxi ? &H_t_w : nullptr);
|
||||
const Vector3 v = local.applyLeftJacobian(nu, Hxi ? &H_v_w : nullptr);
|
||||
|
||||
if (Hxi) {
|
||||
// See Pose3::Expamp for explanation of the Jacobians
|
||||
const Matrix3 Jr = local.rightJacobian();
|
||||
const Matrix3 X = Jr * local.leftJacobianInverse();
|
||||
*Hxi << Jr, Z_3x3, Z_3x3, //
|
||||
Qt, Jr, Z_3x3, //
|
||||
Qv, Z_3x3, Jr;
|
||||
X * H_t_w, Jr, Z_3x3, //
|
||||
X * H_v_w, Z_3x3, Jr;
|
||||
}
|
||||
|
||||
return NavState(R, t, v);
|
||||
|
|
@ -231,11 +240,21 @@ Matrix9 NavState::LogmapDerivative(const NavState& state) {
|
|||
const Vector3 w = xi.head<3>();
|
||||
Vector3 rho = xi.segment<3>(3);
|
||||
Vector3 nu = xi.tail<3>();
|
||||
|
||||
Matrix3 Qt, Qv;
|
||||
const Rot3 R = Rot3::Expmap(w);
|
||||
Pose3::ExpmapTranslation(w, rho, Qt);
|
||||
Pose3::ExpmapTranslation(w, nu, Qv);
|
||||
|
||||
// Instantiate functor for Dexp-related operations:
|
||||
const bool nearZero = (w.dot(w) <= 1e-5);
|
||||
const so3::DexpFunctor local(w, nearZero);
|
||||
|
||||
// Call applyLeftJacobian to get its Jacobians
|
||||
Matrix3 H_t_w, H_v_w;
|
||||
local.applyLeftJacobian(rho, H_t_w);
|
||||
local.applyLeftJacobian(nu, H_v_w);
|
||||
|
||||
// Multiply with X, translates from left to right for our expmap convention:
|
||||
const Matrix3 X = local.rightJacobian() * local.leftJacobianInverse();
|
||||
const Matrix3 Qt = X * H_t_w;
|
||||
const Matrix3 Qv = X * H_v_w;
|
||||
|
||||
const Matrix3 Jw = Rot3::LogmapDerivative(w);
|
||||
const Matrix3 Qt2 = -Jw * Qt * Jw;
|
||||
const Matrix3 Qv2 = -Jw * Qv * Jw;
|
||||
|
|
@ -247,7 +266,6 @@ Matrix9 NavState::LogmapDerivative(const NavState& state) {
|
|||
return J;
|
||||
}
|
||||
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
NavState NavState::ChartAtOrigin::Retract(const Vector9& xi,
|
||||
ChartJacobian Hxi) {
|
||||
|
|
|
|||
Loading…
Reference in New Issue