Added try/catch for triangulation exception
Optimizations resulting in about 6-7% improvement Added methods returning keys and other information needed to create generic projection factors Code cleanuprelease/4.3a0
							parent
							
								
									0bc208e093
								
							
						
					
					
						commit
						0466e606b0
					
				| 
						 | 
				
			
			@ -171,8 +171,13 @@ namespace gtsam {
 | 
			
		|||
    /// linearize returns a Hessianfactor that is an approximation of error(p)
 | 
			
		||||
    virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
 | 
			
		||||
 | 
			
		||||
      bool debug = false;
 | 
			
		||||
      bool blockwise = true;
 | 
			
		||||
      bool blockwise = false;
 | 
			
		||||
      
 | 
			
		||||
      unsigned int numKeys = keys_.size();
 | 
			
		||||
      std::vector<Index> js;
 | 
			
		||||
      std::vector<Matrix> Gs(numKeys*(numKeys+1)/2);
 | 
			
		||||
      std::vector<Vector> gs(numKeys);
 | 
			
		||||
      double f=0;
 | 
			
		||||
 | 
			
		||||
      // Collect all poses (Cameras)
 | 
			
		||||
      std::vector<Pose3> cameraPoses;
 | 
			
		||||
| 
						 | 
				
			
			@ -184,53 +189,25 @@ namespace gtsam {
 | 
			
		|||
      }
 | 
			
		||||
 | 
			
		||||
      // We triangulate the 3D position of the landmark
 | 
			
		||||
      if (debug) {
 | 
			
		||||
        BOOST_FOREACH(const Pose3& pose, cameraPoses) {
 | 
			
		||||
          std::cout << "Pose: " << pose << std::endl;
 | 
			
		||||
        }
 | 
			
		||||
        BOOST_FOREACH(const Point2& point, measured_) {
 | 
			
		||||
          std::cout << "Point: " << point << std::endl;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      boost::optional<Point3> point;
 | 
			
		||||
      if (point_) {
 | 
			
		||||
      	point = point_;
 | 
			
		||||
        //std::cout << "Using existing point " << *point << std::endl;
 | 
			
		||||
      } else {
 | 
			
		||||
        //std::cout << "Triangulating in linearize " << std::endl;
 | 
			
		||||
        point = triangulatePoint3(cameraPoses, measured_, *K_);
 | 
			
		||||
      }
 | 
			
		||||
      if (debug) std::cout << "Result: " << *point << std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      if (debug) {
 | 
			
		||||
        std::cout << "point " << *point << std::endl;
 | 
			
		||||
      try {
 | 
			
		||||
          point = triangulatePoint3(cameraPoses, measured_, *K_);
 | 
			
		||||
      } catch( TriangulationCheiralityException& e) {
 | 
			
		||||
          // point is behind one of the cameras, turn factor off by setting everything to 0
 | 
			
		||||
          //std::cout << e.what() << std::end;
 | 
			
		||||
          BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6);
 | 
			
		||||
          BOOST_FOREACH(Vector& v, gs) v = zero(6);
 | 
			
		||||
          return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f));         
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      std::vector<Matrix> Gs(keys_.size()*(keys_.size()+1)/2);
 | 
			
		||||
      std::vector<Vector> gs(keys_.size());
 | 
			
		||||
      double f=0;
 | 
			
		||||
 | 
			
		||||
      // point is behind one of the cameras, turn factor off by setting everything to 0
 | 
			
		||||
      if (!point) {
 | 
			
		||||
        std::cout << "WARNING: Could not triangulate during linearize" << std::endl;
 | 
			
		||||
        BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6,6);
 | 
			
		||||
        BOOST_FOREACH(Vector& v, gs) v = zero(6);
 | 
			
		||||
        return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f));
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // For debug only
 | 
			
		||||
      std::vector<Matrix> Gs1;
 | 
			
		||||
      std::vector<Vector> gs1;
 | 
			
		||||
      if (blockwise || debug){
 | 
			
		||||
      if (blockwise){
 | 
			
		||||
        // ==========================================================================================================
 | 
			
		||||
        std::vector<Matrix> Hx(keys_.size());
 | 
			
		||||
        std::vector<Matrix> Hl(keys_.size());
 | 
			
		||||
        std::vector<Vector> b(keys_.size());
 | 
			
		||||
        std::vector<Matrix> Hx(numKeys);
 | 
			
		||||
        std::vector<Matrix> Hl(numKeys);
 | 
			
		||||
        std::vector<Vector> b(numKeys);
 | 
			
		||||
 | 
			
		||||
        for(size_t i = 0; i < measured_.size(); i++) {
 | 
			
		||||
          Pose3 pose = cameraPoses.at(i);
 | 
			
		||||
//          std::cout << "pose " << pose << std::endl;
 | 
			
		||||
          PinholeCamera<CALIBRATION> camera(pose, *K_);
 | 
			
		||||
          b.at(i) = - ( camera.project(*point,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector();
 | 
			
		||||
          noise_-> WhitenSystem(Hx.at(i), Hl.at(i), b.at(i));
 | 
			
		||||
| 
						 | 
				
			
			@ -255,64 +232,33 @@ namespace gtsam {
 | 
			
		|||
          for(size_t i2 = 0; i2 < keys_.size(); i2++) {
 | 
			
		||||
            // we only need the upper triangular entries
 | 
			
		||||
            Hxl[i1][i2] = Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose();
 | 
			
		||||
            if (i1==0 && i2==0){
 | 
			
		||||
              if (debug) {
 | 
			
		||||
                std::cout << "Hoff"<< i1 << i2 << "=[" << Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose() << "];" << std::endl;
 | 
			
		||||
                std::cout << "Hxoff"<< "=[" << Hx.at(i1) << "];" << std::endl;
 | 
			
		||||
                std::cout << "Hloff"<< "=[" << Hl.at(i1) << "];" << std::endl;
 | 
			
		||||
                std::cout << "Hloff2"<< "=[" << Hl.at(i2) << "];" << std::endl;
 | 
			
		||||
                std::cout << "C"<< "=[" << C << "];" << std::endl;
 | 
			
		||||
              }
 | 
			
		||||
            }
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
        // Populate Gs and gs
 | 
			
		||||
        int GsCount = 0;
 | 
			
		||||
        for(size_t i1 = 0; i1 < keys_.size(); i1++) {
 | 
			
		||||
        for(size_t i1 = 0; i1 < numKeys; i1++) {
 | 
			
		||||
          gs.at(i1) = Hx.at(i1).transpose() * b.at(i1);
 | 
			
		||||
 | 
			
		||||
          for(size_t i2 = 0; i2 < keys_.size(); i2++) {
 | 
			
		||||
          for(size_t i2 = 0; i2 < numKeys; i2++) {
 | 
			
		||||
            gs.at(i1) -= Hxl[i1][i2] * b.at(i2);
 | 
			
		||||
 | 
			
		||||
            if (i2 == i1){
 | 
			
		||||
              Gs.at(GsCount) = Hx.at(i1).transpose() * Hx.at(i1) - Hxl[i1][i2] * Hx.at(i2);
 | 
			
		||||
 | 
			
		||||
              if (debug) {
 | 
			
		||||
                std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl;
 | 
			
		||||
                std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl;
 | 
			
		||||
                std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl;
 | 
			
		||||
              }
 | 
			
		||||
              GsCount++;
 | 
			
		||||
            }
 | 
			
		||||
            if (i2 > i1) {
 | 
			
		||||
              Gs.at(GsCount) = - Hxl[i1][i2] * Hx.at(i2);
 | 
			
		||||
 | 
			
		||||
              if (debug) {
 | 
			
		||||
                std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl;
 | 
			
		||||
                std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl;
 | 
			
		||||
                std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl;
 | 
			
		||||
              }
 | 
			
		||||
              GsCount++;
 | 
			
		||||
            }
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
        if (debug) {
 | 
			
		||||
          // Copy result for later comparison
 | 
			
		||||
          BOOST_FOREACH(const Matrix& m, Gs) {
 | 
			
		||||
            Gs1.push_back(m);
 | 
			
		||||
          }
 | 
			
		||||
          // Copy result for later comparison
 | 
			
		||||
          BOOST_FOREACH(const Matrix& m, gs) {
 | 
			
		||||
            gs1.push_back(m);
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if (blockwise == false || debug){ // version with full matrix multiplication
 | 
			
		||||
      if (blockwise == false){ // version with full matrix multiplication
 | 
			
		||||
        // ==========================================================================================================
 | 
			
		||||
        Matrix Hx2 = zeros(2*keys_.size(), 6*keys_.size());
 | 
			
		||||
        Matrix Hl2 = zeros(2*keys_.size(), 3);
 | 
			
		||||
        Vector b2 = zero(2*keys_.size());
 | 
			
		||||
        Matrix Hx2 = zeros(2 * numKeys, 6 * numKeys);
 | 
			
		||||
        Matrix Hl2 = zeros(2 * numKeys, 3);
 | 
			
		||||
        Vector b2 = zero(2 * numKeys);
 | 
			
		||||
 | 
			
		||||
        for(size_t i = 0; i < measured_.size(); i++) {
 | 
			
		||||
          Pose3 pose = cameraPoses.at(i);
 | 
			
		||||
| 
						 | 
				
			
			@ -326,39 +272,24 @@ namespace gtsam {
 | 
			
		|||
           Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi;
 | 
			
		||||
           Hl2.block( 2*i, 0, 2, 3  ) = Hli;
 | 
			
		||||
 | 
			
		||||
           if (debug) {
 | 
			
		||||
             std::cout << "Hxi= \n" << Hxi << std::endl;
 | 
			
		||||
             std::cout << "Hxi.transpose() * Hxi= \n" << Hxi.transpose() * Hxi << std::endl;
 | 
			
		||||
             std::cout << "Hxl.transpose() * Hxl= \n" << Hli.transpose() * Hli << std::endl;
 | 
			
		||||
           }
 | 
			
		||||
           subInsert(b2,bi,2*i);
 | 
			
		||||
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Shur complement trick
 | 
			
		||||
        Matrix H(6*keys_.size(), 6*keys_.size());
 | 
			
		||||
        Matrix H(6 * numKeys, 6 * numKeys);
 | 
			
		||||
        Matrix3 C2 = (Hl2.transpose() * Hl2).inverse();
 | 
			
		||||
        H = Hx2.transpose() * Hx2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * Hx2;
 | 
			
		||||
        H = Hx2.transpose() * (Hx2 - (Hl2 * (C2 * (Hl2.transpose() * Hx2))));
 | 
			
		||||
 | 
			
		||||
        if (debug) {
 | 
			
		||||
          std::cout << "Hx2" << "=[" << Hx2 << "];" << std::endl;
 | 
			
		||||
          std::cout << "Hl2" << "=[" << Hl2 << "];" << std::endl;
 | 
			
		||||
          std::cout << "H" << "=[" << H << "];" << std::endl;
 | 
			
		||||
 | 
			
		||||
          std::cout << "Cnoinv2"<< "=[" << Hl2.transpose() * Hl2 << "];" << std::endl;
 | 
			
		||||
          std::cout << "C2"<< "=[" << C2 << "];" << std::endl;
 | 
			
		||||
          std::cout << "================================================================================"  << std::endl;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        Vector gs_vector =  Hx2.transpose() * b2 -  Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * b2;
 | 
			
		||||
        Vector gs_vector = Hx2.transpose() * (b2 - (Hl2 * (C2 * (Hl2.transpose() * b2))));
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        // Populate Gs and gs
 | 
			
		||||
        int GsCount2 = 0;
 | 
			
		||||
        for(size_t i1 = 0; i1 < keys_.size(); i1++) {
 | 
			
		||||
        for(size_t i1 = 0; i1 < numKeys; i1++) {
 | 
			
		||||
          gs.at(i1) = sub(gs_vector, 6*i1, 6*i1 + 6);
 | 
			
		||||
 | 
			
		||||
          for(size_t i2 = 0; i2 < keys_.size(); i2++) {
 | 
			
		||||
          for(size_t i2 = 0; i2 < numKeys; i2++) {
 | 
			
		||||
            if (i2 >= i1) {
 | 
			
		||||
              Gs.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6);
 | 
			
		||||
              GsCount2++;
 | 
			
		||||
| 
						 | 
				
			
			@ -368,27 +299,6 @@ namespace gtsam {
 | 
			
		|||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if (debug) {
 | 
			
		||||
        // Compare blockwise and full version
 | 
			
		||||
        bool gs1_equal_gs = true;
 | 
			
		||||
        for(size_t i = 0; i < measured_.size(); i++) {
 | 
			
		||||
          std::cout << "gs.at(i) " << gs.at(i).transpose() << std::endl;
 | 
			
		||||
          std::cout << "gs1.at(i) " << gs1.at(i).transpose() << std::endl;
 | 
			
		||||
          std::cout << "gs.error  " << (gs.at(i)- gs1.at(i)).transpose() << std::endl;
 | 
			
		||||
          if( !equal(gs.at(i), gs1.at(i)), 1e-7) {
 | 
			
		||||
            gs1_equal_gs = false;
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
        std::cout << "gs1_equal_gs " << gs1_equal_gs << std::endl;
 | 
			
		||||
 | 
			
		||||
        for(size_t i = 0; i < keys_.size()*(keys_.size()+1)/2; i++) {
 | 
			
		||||
          std::cout << "Gs.at(i) " << Gs.at(i).transpose() << std::endl;
 | 
			
		||||
          std::cout << "Gs1.at(i) " << Gs1.at(i).transpose() << std::endl;
 | 
			
		||||
          std::cout << "Gs.error  " << (Gs.at(i)- Gs1.at(i)).transpose() << std::endl;
 | 
			
		||||
        }
 | 
			
		||||
        std::cout << "Gs1_equal_Gs " << gs1_equal_gs << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // ==========================================================================================================
 | 
			
		||||
      return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f));
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -400,7 +310,6 @@ namespace gtsam {
 | 
			
		|||
     * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
 | 
			
		||||
     */
 | 
			
		||||
    virtual double error(const Values& values) const {
 | 
			
		||||
      bool debug = false;
 | 
			
		||||
      if (this->active(values)) {
 | 
			
		||||
        double overallError=0;
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -415,39 +324,23 @@ namespace gtsam {
 | 
			
		|||
        }
 | 
			
		||||
 | 
			
		||||
        // We triangulate the 3D position of the landmark
 | 
			
		||||
        if (debug) {
 | 
			
		||||
          BOOST_FOREACH(const Pose3& pose, cameraPoses) {
 | 
			
		||||
            std::cout << "Pose: " << pose << std::endl;
 | 
			
		||||
          }
 | 
			
		||||
          BOOST_FOREACH(const Point2& point, measured_) {
 | 
			
		||||
            std::cout << "Point: " << point << std::endl;
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
        boost::optional<Point3> point;
 | 
			
		||||
        if (point_) {
 | 
			
		||||
        	point = point_;
 | 
			
		||||
            std::cout << "Using existing point " << *point << std::endl;
 | 
			
		||||
        } else {
 | 
			
		||||
          //std::cout << "Triangulate during error calc" << std::endl;
 | 
			
		||||
          point = triangulatePoint3(cameraPoses, measured_, *K_);
 | 
			
		||||
        try {
 | 
			
		||||
            point = triangulatePoint3(cameraPoses, measured_, *K_);
 | 
			
		||||
        } catch( TriangulationCheiralityException& e) {
 | 
			
		||||
            // point is behind one of the cameras, turn factor off by setting everything to 0
 | 
			
		||||
            //std::cout << e.what() << std::end;
 | 
			
		||||
            return 0.0;
 | 
			
		||||
        }
 | 
			
		||||
        if (debug) std::cout << "Result: " << *point << std::endl;
 | 
			
		||||
 | 
			
		||||
        if(point)
 | 
			
		||||
        { // triangulation produced a good estimate of landmark position
 | 
			
		||||
        for(size_t i = 0; i < measured_.size(); i++) {
 | 
			
		||||
          Pose3 pose = cameraPoses.at(i);
 | 
			
		||||
          PinholeCamera<CALIBRATION> camera(pose, *K_);
 | 
			
		||||
 | 
			
		||||
          for(size_t i = 0; i < measured_.size(); i++) {
 | 
			
		||||
            Pose3 pose = cameraPoses.at(i);
 | 
			
		||||
            PinholeCamera<CALIBRATION> camera(pose, *K_);
 | 
			
		||||
 | 
			
		||||
            Point2 reprojectionError(camera.project(*point) - measured_.at(i));
 | 
			
		||||
            overallError += noise_->distance( reprojectionError.vector() );
 | 
			
		||||
          }
 | 
			
		||||
          return overallError;
 | 
			
		||||
        } else{ // triangulation failed: we deactivate the factor, then the error should not contribute to the overall error
 | 
			
		||||
          std::cout << "WARNING: Could not triangulate during error calc" << std::endl;
 | 
			
		||||
          return 0.0;
 | 
			
		||||
          Point2 reprojectionError(camera.project(*point) - measured_.at(i));
 | 
			
		||||
          overallError += noise_->distance( reprojectionError.vector() );
 | 
			
		||||
        }
 | 
			
		||||
        return overallError;
 | 
			
		||||
      } else {
 | 
			
		||||
        return 0.0;
 | 
			
		||||
      }
 | 
			
		||||
| 
						 | 
				
			
			@ -458,6 +351,16 @@ namespace gtsam {
 | 
			
		|||
      return measured_;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /** return the noise model */
 | 
			
		||||
    const SharedNoiseModel& noise() const {
 | 
			
		||||
      return noise_; 
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /** return the noise landmark */
 | 
			
		||||
    boost::optional<Point3> point() const {
 | 
			
		||||
      return point_;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /** return the calibration object */
 | 
			
		||||
    inline const boost::shared_ptr<CALIBRATION> calibration() const {
 | 
			
		||||
      return K_;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue