Modernized/refactored, esp. with regards to map insert and iterating.
parent
6efac9d549
commit
044ea1348d
|
|
@ -21,21 +21,63 @@ using namespace gtsam;
|
|||
|
||||
typedef pair<Symbol,Matrix> NamedMatrix;
|
||||
|
||||
// MACRO to loop. Ugly with pointer, but best I could in short time
|
||||
#define FOREACH_PAIR(KEY,VAL,COL) const_iterator it = COL.begin(); \
|
||||
const Symbol* KEY = it == COL.end() ? NULL : &(it->first); \
|
||||
const Matrix* VAL = it == COL.end() ? NULL : &(it->second); \
|
||||
for (; it != COL.end(); it++, KEY=&(it->first), VAL=&(it->second))
|
||||
/* ************************************************************************* */
|
||||
GaussianFactor::GaussianFactor(const Vector& b_in) :
|
||||
b_(b_in) {
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianFactor::GaussianFactor(const Symbol& key1, const Matrix& A1,
|
||||
const Vector& b, const SharedDiagonal& model) :
|
||||
model_(model),b_(b) {
|
||||
As_[key1] = A1;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianFactor::GaussianFactor(const Symbol& key1, const Matrix& A1,
|
||||
const Symbol& key2, const Matrix& A2,
|
||||
const Vector& b, const SharedDiagonal& model) :
|
||||
model_(model), b_(b) {
|
||||
As_[key1] = A1;
|
||||
As_[key2] = A2;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianFactor::GaussianFactor(const Symbol& key1, const Matrix& A1,
|
||||
const Symbol& key2, const Matrix& A2,
|
||||
const Symbol& key3, const Matrix& A3,
|
||||
const Vector& b, const SharedDiagonal& model) :
|
||||
model_(model),b_(b) {
|
||||
As_[key1] = A1;
|
||||
As_[key2] = A2;
|
||||
As_[key3] = A3;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianFactor::GaussianFactor(const std::vector<std::pair<Symbol, Matrix> > &terms,
|
||||
const Vector &b, const SharedDiagonal& model) :
|
||||
model_(model), b_(b) {
|
||||
BOOST_FOREACH(const NamedMatrix& pair, terms)
|
||||
As_.insert(pair);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianFactor::GaussianFactor(const std::list<std::pair<Symbol, Matrix> > &terms,
|
||||
const Vector &b, const SharedDiagonal& model) :
|
||||
model_(model), b_(b) {
|
||||
BOOST_FOREACH(const NamedMatrix& pair, terms)
|
||||
As_.insert(pair);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianFactor::GaussianFactor(const boost::shared_ptr<GaussianConditional>& cg) :
|
||||
b_(cg->get_d()) {
|
||||
As_.insert(make_pair(cg->key(), cg->get_R()));
|
||||
As_.insert(NamedMatrix(cg->key(), cg->get_R()));
|
||||
SymbolMap<Matrix>::const_iterator it = cg->parentsBegin();
|
||||
for (; it != cg->parentsEnd(); it++) {
|
||||
const Symbol& j = it->first;
|
||||
const Matrix& Aj = it->second;
|
||||
As_.insert(make_pair(j, Aj));
|
||||
As_.insert(NamedMatrix(j, Aj));
|
||||
}
|
||||
// set sigmas from precisions
|
||||
size_t n = b_.size();
|
||||
|
|
@ -99,8 +141,8 @@ void GaussianFactor::print(const string& s) const {
|
|||
cout << s << endl;
|
||||
if (empty()) cout << " empty" << endl;
|
||||
else {
|
||||
FOREACH_PAIR(j,Aj,As_)
|
||||
gtsam::print(*Aj, "A["+(string)*j+"]=\n");
|
||||
BOOST_FOREACH(const NamedMatrix& jA, As_)
|
||||
gtsam::print(jA.second, "A["+(string)jA.first+"]=\n");
|
||||
gtsam::print(b_,"b=");
|
||||
model_->print("model");
|
||||
}
|
||||
|
|
@ -145,8 +187,8 @@ bool GaussianFactor::equals(const Factor<VectorConfig>& f, double tol) const {
|
|||
Vector GaussianFactor::unweighted_error(const VectorConfig& c) const {
|
||||
Vector e = -b_;
|
||||
if (empty()) return e;
|
||||
FOREACH_PAIR(j,Aj,As_)
|
||||
e += (*Aj * c[*j]);
|
||||
BOOST_FOREACH(const NamedMatrix& jA, As_)
|
||||
e += (jA.second * c[jA.first]);
|
||||
return e;
|
||||
}
|
||||
|
||||
|
|
@ -175,15 +217,16 @@ list<Symbol> GaussianFactor::keys() const {
|
|||
/* ************************************************************************* */
|
||||
Dimensions GaussianFactor::dimensions() const {
|
||||
Dimensions result;
|
||||
FOREACH_PAIR(j,Aj,As_) result.insert(make_pair(*j,Aj->size2()));
|
||||
BOOST_FOREACH(const NamedMatrix& jA, As_)
|
||||
result.insert(std::pair<Symbol,int>(jA.first,jA.second.size2()));
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void GaussianFactor::tally_separator(const Symbol& key, set<Symbol>& separator) const {
|
||||
if(involves(key)) {
|
||||
FOREACH_PAIR(j,A,As_)
|
||||
if(*j != key) separator.insert(*j);
|
||||
BOOST_FOREACH(const NamedMatrix& jA, As_)
|
||||
if(jA.first != key) separator.insert(jA.first);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -193,8 +236,8 @@ Vector GaussianFactor::operator*(const VectorConfig& x) const {
|
|||
if (empty()) return Ax;
|
||||
|
||||
// Just iterate over all A matrices and multiply in correct config part
|
||||
FOREACH_PAIR(j, Aj, As_)
|
||||
Ax += (*Aj * x[*j]);
|
||||
BOOST_FOREACH(const NamedMatrix& jA, As_)
|
||||
Ax += (jA.second * x[jA.first]);
|
||||
|
||||
return model_->whiten(Ax);
|
||||
}
|
||||
|
|
@ -204,8 +247,8 @@ VectorConfig GaussianFactor::operator^(const Vector& e) const {
|
|||
Vector E = model_->whiten(e);
|
||||
VectorConfig x;
|
||||
// Just iterate over all A matrices and insert Ai^e into VectorConfig
|
||||
FOREACH_PAIR(j, Aj, As_)
|
||||
x.insert(*j,(*Aj)^E);
|
||||
BOOST_FOREACH(const NamedMatrix& jA, As_)
|
||||
x.insert(jA.first,jA.second^E);
|
||||
return x;
|
||||
}
|
||||
|
||||
|
|
@ -214,8 +257,8 @@ void GaussianFactor::transposeMultiplyAdd(double alpha, const Vector& e,
|
|||
VectorConfig& x) const {
|
||||
Vector E = alpha * model_->whiten(e);
|
||||
// Just iterate over all A matrices and insert Ai^e into VectorConfig
|
||||
FOREACH_PAIR(j, Aj, As_)
|
||||
gtsam::transposeMultiplyAdd(1.0, *Aj, E, x[*j]);
|
||||
BOOST_FOREACH(const NamedMatrix& jA, As_)
|
||||
gtsam::transposeMultiplyAdd(1.0, jA.second, E, x[jA.first]);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -337,16 +380,16 @@ GaussianFactor::sparse(const Dimensions& columnIndices) const {
|
|||
list<double> S;
|
||||
|
||||
// iterate over all matrices in the factor
|
||||
FOREACH_PAIR( key, Aj, As_) {
|
||||
BOOST_FOREACH(const NamedMatrix& jA, As_) {
|
||||
// find first column index for this key
|
||||
int column_start = columnIndices.at(*key);
|
||||
for (size_t i = 0; i < Aj->size1(); i++) {
|
||||
int column_start = columnIndices.at(jA.first);
|
||||
for (size_t i = 0; i < jA.second.size1(); i++) {
|
||||
double sigma_i = model_->sigma(i);
|
||||
for (size_t j = 0; j < Aj->size2(); j++)
|
||||
if ((*Aj)(i, j) != 0.0) {
|
||||
for (size_t j = 0; j < jA.second.size2(); j++)
|
||||
if (jA.second(i, j) != 0.0) {
|
||||
I.push_back(i + 1);
|
||||
J.push_back(j + column_start);
|
||||
S.push_back((*Aj)(i, j) / sigma_i);
|
||||
S.push_back(jA.second(i, j) / sigma_i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -359,22 +402,24 @@ GaussianFactor::sparse(const Dimensions& columnIndices) const {
|
|||
void GaussianFactor::append_factor(GaussianFactor::shared_ptr f, size_t m, size_t pos) {
|
||||
|
||||
// iterate over all matrices from the factor f
|
||||
FOREACH_PAIR( key, A, f->As_) {
|
||||
BOOST_FOREACH(const NamedMatrix& p, f->As_) {
|
||||
const Symbol& key = p.first;
|
||||
const Matrix& Aj = p.second;
|
||||
|
||||
// find the corresponding matrix among As
|
||||
iterator mine = As_.find(*key);
|
||||
iterator mine = As_.find(key);
|
||||
const bool exists = mine != As_.end();
|
||||
|
||||
// find rows and columns
|
||||
const size_t n = A->size2();
|
||||
const size_t n = Aj.size2();
|
||||
|
||||
// use existing or create new matrix
|
||||
if (exists)
|
||||
copy(A->data().begin(), A->data().end(), (mine->second).data().begin()+pos*n);
|
||||
copy(Aj.data().begin(), Aj.data().end(), (mine->second).data().begin()+pos*n);
|
||||
else {
|
||||
Matrix Z = zeros(m, n);
|
||||
copy(A->data().begin(), A->data().end(), Z.data().begin()+pos*n);
|
||||
insert(*key, Z);
|
||||
copy(Aj.data().begin(), Aj.data().end(), Z.data().begin()+pos*n);
|
||||
insert(key, Z);
|
||||
}
|
||||
|
||||
} // FOREACH
|
||||
|
|
|
|||
|
|
@ -47,65 +47,37 @@ protected:
|
|||
|
||||
public:
|
||||
|
||||
// TODO: eradicate, as implies non-const
|
||||
GaussianFactor() {
|
||||
}
|
||||
/* default constructor for I/O */
|
||||
GaussianFactor() {}
|
||||
|
||||
/** Construct Null factor */
|
||||
GaussianFactor(const Vector& b_in) :
|
||||
b_(b_in) {
|
||||
}
|
||||
GaussianFactor(const Vector& b_in);
|
||||
|
||||
/** Construct unary factor */
|
||||
GaussianFactor(const Symbol& key1, const Matrix& A1,
|
||||
const Vector& b, const SharedDiagonal& model) :
|
||||
model_(model),b_(b) {
|
||||
As_.insert(make_pair(key1, A1));
|
||||
}
|
||||
const Vector& b, const SharedDiagonal& model);
|
||||
|
||||
/** Construct binary factor */
|
||||
GaussianFactor(const Symbol& key1, const Matrix& A1,
|
||||
const Symbol& key2, const Matrix& A2,
|
||||
const Vector& b, const SharedDiagonal& model) :
|
||||
model_(model), b_(b) {
|
||||
As_.insert(make_pair(key1, A1));
|
||||
As_.insert(make_pair(key2, A2));
|
||||
}
|
||||
const Vector& b, const SharedDiagonal& model);
|
||||
|
||||
/** Construct ternary factor */
|
||||
GaussianFactor(const Symbol& key1, const Matrix& A1,
|
||||
const Symbol& key2, const Matrix& A2,
|
||||
const Symbol& key3, const Matrix& A3,
|
||||
const Vector& b, const SharedDiagonal& model) :
|
||||
model_(model),b_(b) {
|
||||
As_.insert(make_pair(key1, A1));
|
||||
As_.insert(make_pair(key2, A2));
|
||||
As_.insert(make_pair(key3, A3));
|
||||
}
|
||||
GaussianFactor(const Symbol& key1, const Matrix& A1, const Symbol& key2,
|
||||
const Matrix& A2, const Symbol& key3, const Matrix& A3,
|
||||
const Vector& b, const SharedDiagonal& model);
|
||||
|
||||
/** Construct an n-ary factor */
|
||||
GaussianFactor(const std::vector<std::pair<Symbol, Matrix> > &terms,
|
||||
const Vector &b, const SharedDiagonal& model) :
|
||||
model_(model), b_(b) {
|
||||
for(unsigned int i=0; i<terms.size(); i++)
|
||||
As_.insert(terms[i]);
|
||||
}
|
||||
const Vector &b, const SharedDiagonal& model);
|
||||
|
||||
GaussianFactor(const std::list<std::pair<Symbol, Matrix> > &terms,
|
||||
const Vector &b, const SharedDiagonal& model) :
|
||||
model_(model), b_(b) {
|
||||
std::pair<Symbol, Matrix> pair;
|
||||
BOOST_FOREACH(pair, terms)
|
||||
As_.insert(pair);
|
||||
}
|
||||
const Vector &b, const SharedDiagonal& model);
|
||||
|
||||
/** Construct from Conditional Gaussian */
|
||||
GaussianFactor(const boost::shared_ptr<GaussianConditional>& cg);
|
||||
|
||||
/**
|
||||
* Constructor that combines a set of factors
|
||||
* @param factors Set of factors to combine
|
||||
*/
|
||||
/** Constructor that combines a set of factors */
|
||||
GaussianFactor(const std::vector<shared_ptr> & factors);
|
||||
|
||||
// Implementing Testable virtual functions
|
||||
|
|
|
|||
Loading…
Reference in New Issue