Added test to verify that GaussianFactorGraph worked in serialization
parent
ec78d54f37
commit
03dcf17393
|
@ -130,6 +130,7 @@ TEST (Serialization, SharedDiagonal_noiseModels) {
|
|||
/* ************************************************************************* */
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::JacobianFactor, "gtsam::JacobianFactor");
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::HessianFactor , "gtsam::HessianFactor");
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::GaussianConditional , "gtsam::GaussianConditional");
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST (Serialization, linear_factors) {
|
||||
|
@ -169,6 +170,33 @@ TEST (Serialization, gaussian_conditional) {
|
|||
EXPECT(equalsBinary(cg));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST (Serialization, gaussian_factor_graph) {
|
||||
GaussianFactorGraph graph;
|
||||
{
|
||||
Matrix A1 = Matrix_(2,2, 1., 2., 3., 4.);
|
||||
Matrix A2 = Matrix_(2,2, 6., 0.2, 8., 0.4);
|
||||
Matrix R = Matrix_(2,2, 0.1, 0.3, 0.0, 0.34);
|
||||
Vector d(2); d << 0.2, 0.5;
|
||||
GaussianConditional cg(0, d, R, 1, A1, 2, A2);
|
||||
graph.push_back(cg);
|
||||
}
|
||||
|
||||
{
|
||||
Key i1 = 4, i2 = 7;
|
||||
Matrix A1 = eye(3), A2 = -1.0 * eye(3);
|
||||
Vector b = ones(3);
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas((Vec(3) << 1.0, 2.0, 3.0));
|
||||
JacobianFactor jacobianfactor(i1, A1, i2, A2, b, model);
|
||||
HessianFactor hessianfactor(jacobianfactor);
|
||||
graph.push_back(jacobianfactor);
|
||||
graph.push_back(hessianfactor);
|
||||
}
|
||||
EXPECT(equalsObj(graph));
|
||||
EXPECT(equalsXML(graph));
|
||||
EXPECT(equalsBinary(graph));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST (Serialization, gaussian_bayes_tree) {
|
||||
const Key x1=1, x2=2, x3=3, x4=4;
|
||||
|
|
Loading…
Reference in New Issue