Files and test files for the thinTree. To be debugged.

release/4.3a0
jdurand7 2012-09-14 22:14:37 +00:00
parent ea2c13bca3
commit 0357559827
6 changed files with 211 additions and 0 deletions

View File

@ -0,0 +1,23 @@
% /* ----------------------------------------------------------------------------
%
% * GTSAM Copyright 2010, Georgia Tech Research Corporation,
% * Atlanta, Georgia 30332-0415
% * All Rights Reserved
% * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% * See LICENSE for the license information
%
% * -------------------------------------------------------------------------- */
%
% /**
% * @file testThinBayesTree.cpp
% * @brief Test of binary tree
% * @date Sep 14, 2012
% * @author Frank Dellaert
% * @author Jean-Guillaume Durand
% */
%% Run the tests
import gtsam.*
bayesTree = thinBayesTree(3,2);
EQUALITY('7 = bayesTree.size', 7, bayesTree.size);

View File

@ -0,0 +1,49 @@
% /* ----------------------------------------------------------------------------
%
% * GTSAM Copyright 2010, Georgia Tech Research Corporation,
% * Atlanta, Georgia 30332-0415
% * All Rights Reserved
% * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% * See LICENSE for the license information
%
% * -------------------------------------------------------------------------- */
%
% /**
% * @file testThinTree.cpp
% * @brief Test of binary tree
% * @date Sep 13, 2012
% * @author Frank Dellaert
% * @author Jean-Guillaume Durand
% */
%% Clear working space
clc, close all, clear all;
%% Create different trees for our example
import gtsam.*
t0 = thinTree(2,1);
t1 = thinTree(3,2);
% Add contents in it
% TODO
%% Create the set of expected output TestValues
expectedNumberOfNodes0 = 3;
expectedNumberOfNodes1 = 7;
expectedParentsOf6in1 = [3 1];
expectedParentsOf7in1 = [3 1];
%% Run the tests
% Tree depth
%TODO
% Number of parents for each node
%TODO
% Number of elements
EQUALITY('expectedNumberOfNodes0,t0.getNumberOfElements', expectedNumberOfNodes0,t0.getNumberOfElements);
EQUALITY('expectedNumberOfNodes1,t1.getNumberOfElements', expectedNumberOfNodes1,t1.getNumberOfElements);
% Parents linking
EQUALITY('expectedParentsOf6in1,t1.getParents(6)', expectedParentsOf6in1,t1.getParents(6));
EQUALITY('expectedParentsOf7in1,t1.getParents(7)', expectedParentsOf7in1,t1.getParents(7));
% Adding an element
bn = thinTreeBayesNet(3,2);
EQUALITY('7 = bn.size', 7, bn.size);

View File

@ -0,0 +1,23 @@
% /* ----------------------------------------------------------------------------
%
% * GTSAM Copyright 2010, Georgia Tech Research Corporation,
% * Atlanta, Georgia 30332-0415
% * All Rights Reserved
% * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% * See LICENSE for the license information
%
% * -------------------------------------------------------------------------- */
%
% /**
% * @file testThinTree.cpp
% * @brief Test of binary tree
% * @date Sep 13, 2012
% * @author Frank Dellaert
% * @author Jean-Guillaume Durand
% */
%% Run the tests
import gtsam.*
bayesNet = thinTreeBayesNet(3,2);
EQUALITY('7 = bayesNet.size', 7, bayesNet.size);

View File

@ -0,0 +1,5 @@
function bayesTree = thinBayesTree(depth, width)
import gtsam.*
bayesNet = thinTreeBayesNet(depth, width);
bayesTree = GaussianBayesTree(bayesNet);
end

View File

@ -0,0 +1,78 @@
classdef thinTree
% Attributes
properties (SetAccess = private)
nodes = { [] }; % Array of the nodes
depth = 0; % Depth of the tree
w = 0 % Number of parents for each node
links = []; % The matrix representing the links between the nodes
end
% Methods
methods
% Constructor
function [obj root_ID] = thinTree(d, w)
% If 0 input arguments, assume d = 1 and w = 1
if nargin < 1
[obj root_ID] = thinTree(1, 1);
return
end
% If 1 input argument, assume w = 1
if nargin < 1
[obj root_ID] = thinTree(d, 1);
return
end
% Else
if w > d-1
error('MATLAB:thinTree:thinTree', ...
'Cannot have %d parents on a binary tree of depth %d. You must have nParents < %d here.\n', w, d, d);
end
root_ID = 1;
obj.nodes = cell(2^d - 1,1); % Creation of the d^2 empty cells
obj.depth = d;
obj.w = w;
obj.links = eye(2^d - 1); % Creation of the links matrix
% Link the cells
end
% Function to add a content for a specific node
function [obj] = addContent(obj, content, nodeID)
obj.nodes{nodeID} = content;
return
end
% Function to return the ID's of a node's parents
function ids = getParents(obj, nodeID)
% Initialisation
ids = zeros(1,obj.w);
node = nodeID;
% Loop on w, the number of parents associated to one node
for i=1:obj.w
ids(i) = floor(node/2);
node = floor(node/2);
end
% Return
return
end
% Accessors
function output = getDepth(obj)
output = obj.depth;
return
end
function output = getW(obj)
output = obj.w;
return
end
function output = getNumberOfElements(obj)
output = 2^obj.depth - 1;
end
end % Methods
end % Class

View File

@ -0,0 +1,33 @@
function [bayesNet, tree] = thinTreeBayesNet(d,w)
import gtsam.*
bayesNet = GaussianBayesNet;
tree = thinTree(3,2);
% Filling the tree
% Creation of the root
gc = gtsam.GaussianConditional(1, 5*rand(1), 5*rand(1), 3*rand(1));
% Getting it into the GaussianBayesNet
bayesNet.push_front(gc);
for i=1:2^tree.getNumberOfElements()
% Getting the parents of that node
parents = tree.getParents(i);
% Create and link the corresponding GaussianConditionals
if tree.getW == 1
% Creation of the GaussianConditional
gc = gtsam.GaussianConditional(parents(1), 5*rand(1), 5*rand(1));
% Getting it into the GaussianBayesNet
bayesNet.push_front(gc);
% Getting it in the thinTree
t = tree.addContent({gc,parents}, i);
elseif tree.getW == 2
% Creation of the GaussianConditional
gc = gtsam.GaussianConditional(parents(2), 5*rand(1), 5*rand(1), parents(1), 5*rand(1), 5*rand(1));
% Getting it into the GaussianBayesNet
bayesNet.push_front(gc);
% Getting it in the thinTree
t = tree.addContent({gc,parents}, i);
end
end
end