renamed sparse to sparseJacobian_
parent
0a101eb50f
commit
03280f2446
|
@ -74,12 +74,14 @@ initialEstimate.print('initial estimate');
|
|||
result = graph.optimize_(initialEstimate);
|
||||
result.print('final result');
|
||||
|
||||
%% Print out the corresponding dense matrix
|
||||
%% Get the corresponding dense matrix
|
||||
ord = graph.orderingCOLAMD(result);
|
||||
gfg = graph.linearize(result,ord);
|
||||
denseAb = gfg.denseJacobian
|
||||
denseAb = gfg.denseJacobian;
|
||||
|
||||
%% Get sparse matrix
|
||||
IJS = gfg.sparse();
|
||||
%% Get sparse matrix A and RHS b
|
||||
IJS = gfg.sparseJacobian_();
|
||||
Ab=sparse(IJS(1,:),IJS(2,:),IJS(3,:));
|
||||
spy(Ab(:,1:end-1));
|
||||
A = Ab(:,1:end-1);
|
||||
b = full(Ab(:,end));
|
||||
spy(A);
|
||||
|
|
2
gtsam.h
2
gtsam.h
|
@ -110,7 +110,7 @@ class GaussianFactorGraph {
|
|||
void combine(const GaussianFactorGraph& lfg);
|
||||
Matrix denseJacobian() const;
|
||||
Matrix denseHessian() const;
|
||||
Matrix sparse() const;
|
||||
Matrix sparseJacobian_() const;
|
||||
};
|
||||
|
||||
class Landmark2 {
|
||||
|
|
|
@ -141,7 +141,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix GaussianFactorGraph::sparse() const {
|
||||
Matrix GaussianFactorGraph::sparseJacobian_() const {
|
||||
|
||||
// call sparseJacobian
|
||||
typedef boost::tuple<size_t, size_t, double> triplet;
|
||||
|
|
|
@ -160,7 +160,7 @@ namespace gtsam {
|
|||
* such that S(i(k),j(k)) = s(k), which can be given to MATLAB's sparse.
|
||||
* The standard deviations are baked into A and b
|
||||
*/
|
||||
Matrix sparse() const;
|
||||
Matrix sparseJacobian_() const;
|
||||
|
||||
/**
|
||||
* Return a dense \f$ m \times n \f$ Jacobian matrix, augmented with b
|
||||
|
|
Loading…
Reference in New Issue