Deterministic example, much more generic importance sampler

release/4.3a0
Frank Dellaert 2023-01-02 12:34:55 -05:00
parent bd8d2ea2c1
commit 021ee1a5d9
1 changed files with 94 additions and 23 deletions

View File

@ -82,10 +82,12 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
self.assertEqual(hv.atDiscrete(C(0)), 1)
@staticmethod
def tiny(num_measurements: int = 1) -> HybridBayesNet:
def tiny(num_measurements: int = 1, prior_mean: float = 5.0,
prior_sigma: float = 0.5) -> HybridBayesNet:
"""
Create a tiny two variable hybrid model which represents
the generative probability P(z, x, n) = P(z | x, n)P(x)P(n).
the generative probability P(Z, x0, mode) = P(Z|x0, mode)P(x0)P(mode).
num_measurements: number of measurements in Z = {z0, z1...}
"""
# Create hybrid Bayes net.
bayesNet = HybridBayesNet()
@ -110,7 +112,8 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
[conditional0, conditional1])
# Create prior on X(0).
prior_on_x0 = GaussianConditional.FromMeanAndStddev(X(0), [5.0], 0.5)
prior_on_x0 = GaussianConditional.FromMeanAndStddev(
X(0), [prior_mean], prior_sigma)
bayesNet.addGaussian(prior_on_x0)
# Add prior on mode.
@ -118,6 +121,28 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
return bayesNet
def test_evaluate(self):
"""Test evaluate with two different prior noise models."""
# TODO(dellaert): really a HBN test
# Create a tiny Bayes net P(x0) P(m0) P(z0|x0)
bayesNet1 = self.tiny(prior_sigma=0.5, num_measurements=1)
bayesNet2 = self.tiny(prior_sigma=5.0, num_measurements=1)
# bn1: # 1/sqrt(2*pi*0.5^2)
# bn2: # 1/sqrt(2*pi*5.0^2)
expected_ratio = np.sqrt(2*np.pi*5.0**2)/np.sqrt(2*np.pi*0.5**2)
mean0 = HybridValues()
mean0.insert(X(0), [5.0])
mean0.insert(Z(0), [5.0])
mean0.insert(M(0), 0)
self.assertAlmostEqual(bayesNet1.evaluate(mean0) /
bayesNet2.evaluate(mean0), expected_ratio, delta=1e-9)
mean1 = HybridValues()
mean1.insert(X(0), [5.0])
mean1.insert(Z(0), [5.0])
mean1.insert(M(0), 1)
self.assertAlmostEqual(bayesNet1.evaluate(mean1) /
bayesNet2.evaluate(mean1), expected_ratio, delta=1e-9)
@staticmethod
def measurements(sample: HybridValues, indices) -> gtsam.VectorValues:
"""Create measurements from a sample, grabbing Z(i) where i in indices."""
@ -143,21 +168,20 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
return fg
@classmethod
def estimate_marginals(cls, bayesNet: HybridBayesNet, sample: HybridValues, N=10000):
def estimate_marginals(cls, target, proposal_density: HybridBayesNet,
N=10000):
"""Do importance sampling to get an estimate of the discrete marginal P(mode)."""
# Use prior on x0, mode as proposal density.
prior = cls.tiny(num_measurements=0) # just P(x0)P(mode)
# Allocate space for marginals.
# Allocate space for marginals on mode.
marginals = np.zeros((2,))
# Do importance sampling.
num_measurements = bayesNet.size() - 2
measurements = cls.measurements(sample, range(num_measurements))
for s in range(N):
proposed = prior.sample()
proposed.insert(measurements)
weight = bayesNet.evaluate(proposed) / prior.evaluate(proposed)
proposed = proposal_density.sample() # sample from proposal
target_proposed = target(proposed) # evaluate target
# print(target_proposed, proposal_density.evaluate(proposed))
weight = target_proposed / proposal_density.evaluate(proposed)
# print weight:
# print(f"weight: {weight}")
marginals[proposed.atDiscrete(M(0))] += weight
# print marginals:
@ -166,23 +190,68 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
def test_tiny(self):
"""Test a tiny two variable hybrid model."""
bayesNet = self.tiny()
sample = bayesNet.sample()
# print(sample)
prior_sigma = 0.5
# P(x0)P(mode)P(z0|x0,mode)
bayesNet = self.tiny(prior_sigma=prior_sigma)
# Deterministic values exactly at the mean, for both x and z:
values = HybridValues()
values.insert(X(0), [5.0])
values.insert(M(0), 0) # low-noise, standard deviation 0.5
z0: float = 5.0
values.insert(Z(0), [z0])
def unnormalized_posterior(x):
"""Posterior is proportional to joint, centered at 5.0 as well."""
x.insert(Z(0), [z0])
# print(x)
return bayesNet.evaluate(x)
# Create proposal density on (x0, mode), making sure it has same mean:
posterior_information = 1/(prior_sigma**2) + 1/(0.5**2)
posterior_sigma = posterior_information**(-0.5)
print(f"Posterior sigma: {posterior_sigma}")
proposal_density = self.tiny(
num_measurements=0, prior_mean=5.0, prior_sigma=posterior_sigma)
# Estimate marginals using importance sampling.
marginals = self.estimate_marginals(bayesNet, sample)
# print(f"True mode: {sample.atDiscrete(M(0))}")
# print(f"P(mode=0; z0) = {marginals[0]}")
# print(f"P(mode=1; z0) = {marginals[1]}")
marginals = self.estimate_marginals(
target=unnormalized_posterior, proposal_density=proposal_density, N=10_000)
print(f"True mode: {values.atDiscrete(M(0))}")
print(f"P(mode=0; z0) = {marginals[0]}")
print(f"P(mode=1; z0) = {marginals[1]}")
# Check that the estimate is close to the true value.
self.assertAlmostEqual(marginals[0], 0.4, delta=0.1)
self.assertAlmostEqual(marginals[1], 0.6, delta=0.1)
self.assertAlmostEqual(marginals[0], 0.74, delta=0.01)
self.assertAlmostEqual(marginals[1], 0.26, delta=0.01)
fg = self.factor_graph_from_bayes_net(bayesNet, sample)
fg = self.factor_graph_from_bayes_net(bayesNet, values)
self.assertEqual(fg.size(), 3)
# Test elimination.
ordering = gtsam.Ordering()
ordering.push_back(X(0))
ordering.push_back(M(0))
posterior = fg.eliminateSequential(ordering)
print(posterior)
def true_posterior(x):
"""Posterior from elimination."""
x.insert(Z(0), [z0])
# print(x)
return posterior.evaluate(x)
# Estimate marginals using importance sampling.
marginals = self.estimate_marginals(
target=true_posterior, proposal_density=proposal_density)
print(f"True mode: {values.atDiscrete(M(0))}")
print(f"P(mode=0; z0) = {marginals[0]}")
print(f"P(mode=1; z0) = {marginals[1]}")
# Check that the estimate is close to the true value.
self.assertAlmostEqual(marginals[0], 0.74, delta=0.01)
self.assertAlmostEqual(marginals[1], 0.26, delta=0.01)
@staticmethod
def calculate_ratio(bayesNet: HybridBayesNet,
fg: HybridGaussianFactorGraph,
@ -190,6 +259,7 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
"""Calculate ratio between Bayes net probability and the factor graph."""
return bayesNet.evaluate(sample) / fg.probPrime(sample) if fg.probPrime(sample) > 0 else 0
@unittest.skip("This test is too slow.")
def test_ratio(self):
"""
Given a tiny two variable hybrid model, with 2 measurements,
@ -269,5 +339,6 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
if (ratio > 0):
self.assertAlmostEqual(ratio, expected_ratio)
if __name__ == "__main__":
unittest.main()