Moved stuff to notebook, Jacobian guidance
parent
3e8a29ae13
commit
02150a2f90
|
@ -18,7 +18,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 1,
|
||||||
"id": "5ccb48e4",
|
"id": "5ccb48e4",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"tags": [
|
"tags": [
|
||||||
|
@ -28,7 +28,17 @@
|
||||||
"languageId": "markdown"
|
"languageId": "markdown"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"\u001b[31mERROR: Could not find a version that satisfies the requirement gtsam-develop (from versions: none)\u001b[0m\u001b[31m\n",
|
||||||
|
"\u001b[0m\u001b[31mERROR: No matching distribution found for gtsam-develop\u001b[0m\u001b[31m\n",
|
||||||
|
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"%pip install --quiet gtsam-develop"
|
"%pip install --quiet gtsam-develop"
|
||||||
]
|
]
|
||||||
|
@ -54,24 +64,58 @@
|
||||||
"\n",
|
"\n",
|
||||||
"The function will be passed a reference to the factor itself so the keys can be accessed, a `Values` reference, and a writeable vector of Jacobians.\n",
|
"The function will be passed a reference to the factor itself so the keys can be accessed, a `Values` reference, and a writeable vector of Jacobians.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Usage\n",
|
"## Usage in Python\n",
|
||||||
"\n",
|
"\n",
|
||||||
"To use `CustomFactor`, users must:\n",
|
"In order to use a Python-based factor, one needs to have a Python function with the following signature:\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"```python\n",
|
||||||
|
"def error_func(this: gtsam.CustomFactor, v: gtsam.Values, H: list[np.ndarray]) -> np.ndarray:\n",
|
||||||
|
" ...\n",
|
||||||
|
"```\n",
|
||||||
|
"\n",
|
||||||
|
"**Explanation**:\n",
|
||||||
|
"- `this` is a reference to the `CustomFactor` object. This is required because one can reuse the same `error_func` for multiple factors. `v` is a reference to the current set of values, and `H` is a list of *references* to the list of required Jacobians (see the corresponding C++ documentation). \n",
|
||||||
|
"- the error returned must be a 1D `numpy` array.\n",
|
||||||
|
"- If `H` is `None`, it means the current factor evaluation does not need Jacobians. For example, the `error`\n",
|
||||||
|
"method on a factor does not need Jacobians, so we don't evaluate them to save CPU. If `H` is not `None`,\n",
|
||||||
|
"each entry of `H` can be assigned a (2D) `numpy` array, as the Jacobian for the corresponding variable.\n",
|
||||||
|
"- All `numpy` matrices inside should be using `order=\"F\"` to maintain interoperability with C++.\n",
|
||||||
|
"\n",
|
||||||
|
"After defining `error_func`, one can create a `CustomFactor` just like any other factor in GTSAM. In summary, to use `CustomFactor`, users must:\n",
|
||||||
"1. Define the custom error function that models the specific measurement or constraint.\n",
|
"1. Define the custom error function that models the specific measurement or constraint.\n",
|
||||||
"2. Implement the calculation of the Jacobian matrix for the error function.\n",
|
"2. Implement the calculation of the Jacobian matrix for the error function.\n",
|
||||||
"3. Define a noise model of the appropriate dimension.\n",
|
"3. Define a noise model of the appropriate dimension.\n",
|
||||||
"3. Add the `CustomFactor` to a factor graph, specifying\n",
|
"3. Add the `CustomFactor` to a factor graph, specifying\n",
|
||||||
" - the noise model\n",
|
" - the noise model\n",
|
||||||
" - the keys of the variables it depends on\n",
|
" - the keys of the variables it depends on\n",
|
||||||
" - the error function\n",
|
" - the error function"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "c7ec3512",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Notes**:\n",
|
||||||
|
"- There are not a lot of restrictions on the function, but note there is overhead in calling a python function from within a c++ optimization loop. \n",
|
||||||
|
"- Because `pybind11` needs to lock the Python GIL lock for evaluation of each factor, parallel evaluation of `CustomFactor` is not possible.\n",
|
||||||
|
"- You can mitigate both of these by having a python function that leverages batching of measurements.\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"Some more examples of usage in python are given in [test_custom_factor.py](https://github.com/borglab/gtsam/blob/develop/python/gtsam/tests/test_custom_factor.py),[CustomFactorExample.py](https://github.com/borglab/gtsam/blob/develop/python/gtsam/examples/CustomFactorExample.py), and [CameraResectioning.py](https://github.com/borglab/gtsam/blob/develop/python/gtsam/examples/CameraResectioning.py)."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "68a66627",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Example\n",
|
||||||
"Below is a simple example that mimics a `BetweenFactor<Pose2>`."
|
"Below is a simple example that mimics a `BetweenFactor<Pose2>`."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 14,
|
"execution_count": 2,
|
||||||
"id": "894bfaf2",
|
"id": "894bfaf2",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
|
@ -89,9 +133,9 @@
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"from gtsam import CustomFactor, noiseModel, Values, Pose2\n",
|
"from gtsam import CustomFactor, noiseModel, Values, Pose2\n",
|
||||||
"\n",
|
"\n",
|
||||||
"measurement = Pose2(2, 2, np.pi / 2)\n",
|
"measurement = Pose2(2, 2, np.pi / 2) # is used to create the error function\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def error_func(this: CustomFactor, v: Values, H: list[np.ndarray]):\n",
|
"def error_func(this: CustomFactor, v: Values, H: list[np.ndarray]=None):\n",
|
||||||
" \"\"\"\n",
|
" \"\"\"\n",
|
||||||
" Error function that mimics a BetweenFactor\n",
|
" Error function that mimics a BetweenFactor\n",
|
||||||
" :param this: reference to the current CustomFactor being evaluated\n",
|
" :param this: reference to the current CustomFactor being evaluated\n",
|
||||||
|
@ -126,7 +170,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 15,
|
"execution_count": 3,
|
||||||
"id": "c92caf2c",
|
"id": "c92caf2c",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
|
@ -163,12 +207,88 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "38c04012",
|
"id": "d9b61f83",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"Note: there are not a lot of restrictions on the function, but note there is overhead in calling a python function from within a c++ optimization loop. You can mitigate this by having a python function that leverages batching of measurements.\n",
|
"## Beware of Jacobians!\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Some more examples of usage in python are given in [test_custom_factor.py](https://github.com/borglab/gtsam/blob/develop/python/gtsam/tests/test_custom_factor.py) and [CustomFactorExample.py](https://github.com/borglab/gtsam/blob/develop/python/gtsam/examples/CustomFactorExample.py)."
|
"It is important to unit-test the Jacobians you provide, because the convention used in GTSAM frequently leads to confusion. In particular, GTSAM updates variables using an exponential map *on the right*. In particular, for a variable $x\\in G$, an n-dimensional Lie group, the Jacobian $H_a$ at $x=a$ is defined as the linear map satisfying\n",
|
||||||
|
"$$\n",
|
||||||
|
"\\lim_{\\xi\\rightarrow0}\\frac{\\left|f(a)+H_a\\xi-f\\left(a \\, \\text{Exp}(\\xi)\\right)\\right|}{\\left|\\xi\\right|}=0,\n",
|
||||||
|
"$$\n",
|
||||||
|
"where $\\xi$ is a n-vector corresponding to an element in the Lie algebra $\\mathfrak{g}$, and $\\text{Exp}(\\xi)\\doteq\\exp(\\xi^{\\wedge})$, with $\\exp$ the exponential map from $\\mathfrak{g}$ back to $G$. The same holds for n-dimensional manifold $M$, in which case we use a suitable retraction instead of the exponential map. More details and examples can be found in [doc/math.pdf](https://github.com/borglab/gtsam/blob/develop/gtsam/doc/math.pdf).\n",
|
||||||
|
"\n",
|
||||||
|
"To test your Jacobians, you can use the handy `gtsam.utils.numerical_derivative` module. We give an example below:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"id": "c815269f",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from gtsam.utils.numerical_derivative import numericalDerivative21, numericalDerivative22\n",
|
||||||
|
"\n",
|
||||||
|
"# Allocate the Jacobians and call error_func\n",
|
||||||
|
"H = [np.empty((6, 6), order='F'),np.empty((6, 6), order='F')]\n",
|
||||||
|
"error_func(custom_factor, values, H)\n",
|
||||||
|
"\n",
|
||||||
|
"# We use error_func directly, so we need to create a binary function constructing the values.\n",
|
||||||
|
"def f (T1, T2):\n",
|
||||||
|
" v = Values()\n",
|
||||||
|
" v.insert(66, T1)\n",
|
||||||
|
" v.insert(77, T2)\n",
|
||||||
|
" return error_func(custom_factor, v)\n",
|
||||||
|
"numerical0 = numericalDerivative21(f, values.atPose2(66), values.atPose2(77))\n",
|
||||||
|
"numerical1 = numericalDerivative22(f, values.atPose2(66), values.atPose2(77))\n",
|
||||||
|
"\n",
|
||||||
|
"# Check the numerical derivatives against the analytical ones\n",
|
||||||
|
"np.testing.assert_allclose(H[0], numerical0, rtol=1e-5, atol=1e-8)\n",
|
||||||
|
"np.testing.assert_allclose(H[1], numerical1, rtol=1e-5, atol=1e-8)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "fd09b0fc",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Implementation Notes\n",
|
||||||
|
"\n",
|
||||||
|
"`CustomFactor` is a `NonlinearFactor` that has a `std::function` as its callback.\n",
|
||||||
|
"This callback can be translated to a Python function call, thanks to `pybind11`'s functional support.\n",
|
||||||
|
"\n",
|
||||||
|
"The constructor of `CustomFactor` is\n",
|
||||||
|
"```c++\n",
|
||||||
|
"/**\n",
|
||||||
|
"* Constructor\n",
|
||||||
|
"* @param noiseModel shared pointer to noise model\n",
|
||||||
|
"* @param keys keys of the variables\n",
|
||||||
|
"* @param errorFunction the error functional\n",
|
||||||
|
"*/\n",
|
||||||
|
"CustomFactor(const SharedNoiseModel& noiseModel, const KeyVector& keys, const CustomErrorFunction& errorFunction) :\n",
|
||||||
|
" Base(noiseModel, keys) {\n",
|
||||||
|
" this->error_function_ = errorFunction;\n",
|
||||||
|
"}\n",
|
||||||
|
"```\n",
|
||||||
|
"\n",
|
||||||
|
"At construction time, `pybind11` will pass the handle to the Python callback function as a `std::function` object.\n",
|
||||||
|
"\n",
|
||||||
|
"Something that deserves a special mention is this:\n",
|
||||||
|
"```c++\n",
|
||||||
|
"/*\n",
|
||||||
|
" * NOTE\n",
|
||||||
|
" * ==========\n",
|
||||||
|
" * pybind11 will invoke a copy if this is `JacobianVector &`,\n",
|
||||||
|
" * and modifications in Python will not be reflected.\n",
|
||||||
|
" *\n",
|
||||||
|
" * This is safe because this is passing a const pointer, \n",
|
||||||
|
" * and pybind11 will maintain the `std::vector` memory layout.\n",
|
||||||
|
" * Thus the pointer will never be invalidated.\n",
|
||||||
|
" */\n",
|
||||||
|
"using CustomErrorFunction = std::function<Vector(const CustomFactor&, const Values&, const JacobianVector*)>;\n",
|
||||||
|
"```\n",
|
||||||
|
"which is not documented in `pybind11` docs. One needs to be aware of this if they wanted to implement similar \"mutable\" arguments going across the Python-C++ boundary.\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
|
|
@ -1,114 +1,4 @@
|
||||||
# GTSAM Python-based factors
|
# GTSAM Python-based factors
|
||||||
|
|
||||||
One now can build factors purely in Python using the `CustomFactor` factor.
|
One now can build factors purely in Python using the `CustomFactor` factor. See [this notebook](../gtsam/nonlinear/doc/CustomFactor.ipynb) for usage.
|
||||||
|
|
||||||
## Usage
|
|
||||||
|
|
||||||
In order to use a Python-based factor, one needs to have a Python function with the following signature:
|
|
||||||
|
|
||||||
```python
|
|
||||||
import gtsam
|
|
||||||
import numpy as np
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
def error_func(this: gtsam.CustomFactor, v: gtsam.Values, H: List[np.ndarray]) -> np.ndarray:
|
|
||||||
...
|
|
||||||
```
|
|
||||||
|
|
||||||
`this` is a reference to the `CustomFactor` object. This is required because one can reuse the same
|
|
||||||
`error_func` for multiple factors. `v` is a reference to the current set of values, and `H` is a list of
|
|
||||||
**references** to the list of required Jacobians (see the corresponding C++ documentation). Note that
|
|
||||||
the error returned must be a 1D `numpy` array.
|
|
||||||
|
|
||||||
If `H` is `None`, it means the current factor evaluation does not need Jacobians. For example, the `error`
|
|
||||||
method on a factor does not need Jacobians, so we don't evaluate them to save CPU. If `H` is not `None`,
|
|
||||||
each entry of `H` can be assigned a (2D) `numpy` array, as the Jacobian for the corresponding variable.
|
|
||||||
|
|
||||||
All `numpy` matrices inside should be using `order="F"` to maintain interoperability with C++.
|
|
||||||
|
|
||||||
After defining `error_func`, one can create a `CustomFactor` just like any other factor in GTSAM:
|
|
||||||
|
|
||||||
```python
|
|
||||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
|
||||||
# constructor(<noise model>, <list of keys>, <error callback>)
|
|
||||||
cf = gtsam.CustomFactor(noise_model, [X(0), X(1)], error_func)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Example
|
|
||||||
|
|
||||||
The following is a simple `BetweenFactor` implemented in Python.
|
|
||||||
|
|
||||||
```python
|
|
||||||
import gtsam
|
|
||||||
import numpy as np
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
expected = Pose2(2, 2, np.pi / 2)
|
|
||||||
|
|
||||||
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]) -> np.ndarray:
|
|
||||||
"""
|
|
||||||
Error function that mimics a BetweenFactor
|
|
||||||
:param this: reference to the current CustomFactor being evaluated
|
|
||||||
:param v: Values object
|
|
||||||
:param H: list of references to the Jacobian arrays
|
|
||||||
:return: the non-linear error
|
|
||||||
"""
|
|
||||||
key0 = this.keys()[0]
|
|
||||||
key1 = this.keys()[1]
|
|
||||||
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
|
|
||||||
error = expected.localCoordinates(gT1.between(gT2))
|
|
||||||
|
|
||||||
if H is not None:
|
|
||||||
result = gT1.between(gT2)
|
|
||||||
H[0] = -result.inverse().AdjointMap()
|
|
||||||
H[1] = np.eye(3)
|
|
||||||
return error
|
|
||||||
|
|
||||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
|
||||||
cf = gtsam.CustomFactor(noise_model, gtsam.KeyVector([0, 1]), error_func)
|
|
||||||
```
|
|
||||||
|
|
||||||
In general, the Python-based factor works just like their C++ counterparts.
|
|
||||||
|
|
||||||
## Known Issues
|
|
||||||
|
|
||||||
Because of the `pybind11`-based translation, the performance of `CustomFactor` is not guaranteed.
|
|
||||||
Also, because `pybind11` needs to lock the Python GIL lock for evaluation of each factor, parallel
|
|
||||||
evaluation of `CustomFactor` is not possible.
|
|
||||||
|
|
||||||
## Implementation
|
|
||||||
|
|
||||||
`CustomFactor` is a `NonlinearFactor` that has a `std::function` as its callback.
|
|
||||||
This callback can be translated to a Python function call, thanks to `pybind11`'s functional support.
|
|
||||||
|
|
||||||
The constructor of `CustomFactor` is
|
|
||||||
```c++
|
|
||||||
/**
|
|
||||||
* Constructor
|
|
||||||
* @param noiseModel shared pointer to noise model
|
|
||||||
* @param keys keys of the variables
|
|
||||||
* @param errorFunction the error functional
|
|
||||||
*/
|
|
||||||
CustomFactor(const SharedNoiseModel& noiseModel, const KeyVector& keys, const CustomErrorFunction& errorFunction) :
|
|
||||||
Base(noiseModel, keys) {
|
|
||||||
this->error_function_ = errorFunction;
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
At construction time, `pybind11` will pass the handle to the Python callback function as a `std::function` object.
|
|
||||||
|
|
||||||
Something worth special mention is this:
|
|
||||||
```c++
|
|
||||||
/*
|
|
||||||
* NOTE
|
|
||||||
* ==========
|
|
||||||
* pybind11 will invoke a copy if this is `JacobianVector &`, and modifications in Python will not be reflected.
|
|
||||||
*
|
|
||||||
* This is safe because this is passing a const pointer, and pybind11 will maintain the `std::vector` memory layout.
|
|
||||||
* Thus the pointer will never be invalidated.
|
|
||||||
*/
|
|
||||||
using CustomErrorFunction = std::function<Vector(const CustomFactor&, const Values&, const JacobianVector*)>;
|
|
||||||
```
|
|
||||||
|
|
||||||
which is not documented in `pybind11` docs. One needs to be aware of this if they wanted to implement similar
|
|
||||||
"mutable" arguments going across the Python-C++ boundary.
|
|
||||||
|
|
Loading…
Reference in New Issue