Merge pull request #1556 from borglab/hybrid-tablefactor

release/4.3a0
Varun Agrawal 2023-07-17 11:54:20 -04:00 committed by GitHub
commit 016f77ba55
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 179 additions and 155 deletions

View File

@ -34,15 +34,12 @@ namespace gtsam {
/* ************************************************************************ */
DecisionTreeFactor::DecisionTreeFactor(const DiscreteKeys& keys,
const ADT& potentials)
: DiscreteFactor(keys.indices()),
ADT(potentials),
cardinalities_(keys.cardinalities()) {}
: DiscreteFactor(keys.indices(), keys.cardinalities()), ADT(potentials) {}
/* ************************************************************************ */
DecisionTreeFactor::DecisionTreeFactor(const DiscreteConditional& c)
: DiscreteFactor(c.keys()),
AlgebraicDecisionTree<Key>(c),
cardinalities_(c.cardinalities_) {}
: DiscreteFactor(c.keys(), c.cardinalities()),
AlgebraicDecisionTree<Key>(c) {}
/* ************************************************************************ */
bool DecisionTreeFactor::equals(const DiscreteFactor& other,
@ -182,15 +179,12 @@ namespace gtsam {
}
/* ************************************************************************ */
DiscreteKeys DecisionTreeFactor::discreteKeys() const {
DiscreteKeys result;
for (auto&& key : keys()) {
DiscreteKey dkey(key, cardinality(key));
if (std::find(result.begin(), result.end(), dkey) == result.end()) {
result.push_back(dkey);
std::vector<double> DecisionTreeFactor::probabilities() const {
std::vector<double> probs;
for (auto&& [key, value] : enumerate()) {
probs.push_back(value);
}
}
return result;
return probs;
}
/* ************************************************************************ */
@ -289,16 +283,14 @@ namespace gtsam {
/* ************************************************************************ */
DecisionTreeFactor::DecisionTreeFactor(const DiscreteKeys& keys,
const vector<double>& table)
: DiscreteFactor(keys.indices()),
AlgebraicDecisionTree<Key>(keys, table),
cardinalities_(keys.cardinalities()) {}
: DiscreteFactor(keys.indices(), keys.cardinalities()),
AlgebraicDecisionTree<Key>(keys, table) {}
/* ************************************************************************ */
DecisionTreeFactor::DecisionTreeFactor(const DiscreteKeys& keys,
const string& table)
: DiscreteFactor(keys.indices()),
AlgebraicDecisionTree<Key>(keys, table),
cardinalities_(keys.cardinalities()) {}
: DiscreteFactor(keys.indices(), keys.cardinalities()),
AlgebraicDecisionTree<Key>(keys, table) {}
/* ************************************************************************ */
DecisionTreeFactor DecisionTreeFactor::prune(size_t maxNrAssignments) const {
@ -306,11 +298,10 @@ namespace gtsam {
// Get the probabilities in the decision tree so we can threshold.
std::vector<double> probabilities;
this->visitLeaf([&](const Leaf& leaf) {
size_t nrAssignments = leaf.nrAssignments();
double prob = leaf.constant();
probabilities.insert(probabilities.end(), nrAssignments, prob);
});
// NOTE(Varun) this is potentially slow due to the cartesian product
for (auto&& [assignment, prob] : this->enumerate()) {
probabilities.push_back(prob);
}
// The number of probabilities can be lower than max_leaves
if (probabilities.size() <= N) {

View File

@ -50,10 +50,6 @@ namespace gtsam {
typedef std::shared_ptr<DecisionTreeFactor> shared_ptr;
typedef AlgebraicDecisionTree<Key> ADT;
protected:
std::map<Key, size_t> cardinalities_;
public:
/// @name Standard Constructors
/// @{
@ -119,8 +115,6 @@ namespace gtsam {
static double safe_div(const double& a, const double& b);
size_t cardinality(Key j) const { return cardinalities_.at(j); }
/// divide by factor f (safely)
DecisionTreeFactor operator/(const DecisionTreeFactor& f) const {
return apply(f, safe_div);
@ -179,8 +173,8 @@ namespace gtsam {
/// Enumerate all values into a map from values to double.
std::vector<std::pair<DiscreteValues, double>> enumerate() const;
/// Return all the discrete keys associated with this factor.
DiscreteKeys discreteKeys() const;
/// Get all the probabilities in order of assignment values
std::vector<double> probabilities() const;
/**
* @brief Prune the decision tree of discrete variables.
@ -260,7 +254,6 @@ namespace gtsam {
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(ADT);
ar& BOOST_SERIALIZATION_NVP(cardinalities_);
}
#endif
};

View File

@ -28,6 +28,18 @@ using namespace std;
namespace gtsam {
/* ************************************************************************ */
DiscreteKeys DiscreteFactor::discreteKeys() const {
DiscreteKeys result;
for (auto&& key : keys()) {
DiscreteKey dkey(key, cardinality(key));
if (std::find(result.begin(), result.end(), dkey) == result.end()) {
result.push_back(dkey);
}
}
return result;
}
/* ************************************************************************* */
double DiscreteFactor::error(const DiscreteValues& values) const {
return -std::log((*this)(values));

View File

@ -36,28 +36,35 @@ class HybridValues;
* @ingroup discrete
*/
class GTSAM_EXPORT DiscreteFactor: public Factor {
public:
// typedefs needed to play nice with gtsam
typedef DiscreteFactor This; ///< This class
typedef std::shared_ptr<DiscreteFactor> shared_ptr; ///< shared_ptr to this class
typedef std::shared_ptr<DiscreteFactor>
shared_ptr; ///< shared_ptr to this class
typedef Factor Base; ///< Our base class
using Values = DiscreteValues; ///< backwards compatibility
public:
protected:
/// Map of Keys and their cardinalities.
std::map<Key, size_t> cardinalities_;
public:
/// @name Standard Constructors
/// @{
/** Default constructor creates empty factor */
DiscreteFactor() {}
/** Construct from container of keys. This constructor is used internally from derived factor
* constructors, either from a container of keys or from a boost::assign::list_of. */
/**
* Construct from container of keys and map of cardinalities.
* This constructor is used internally from derived factor constructors,
* either from a container of keys or from a boost::assign::list_of.
*/
template <typename CONTAINER>
DiscreteFactor(const CONTAINER& keys) : Base(keys) {}
DiscreteFactor(const CONTAINER& keys,
const std::map<Key, size_t> cardinalities = {})
: Base(keys), cardinalities_(cardinalities) {}
/// @}
/// @name Testable
@ -77,6 +84,13 @@ public:
/// @name Standard Interface
/// @{
/// Return all the discrete keys associated with this factor.
DiscreteKeys discreteKeys() const;
std::map<Key, size_t> cardinalities() const { return cardinalities_; }
size_t cardinality(Key j) const { return cardinalities_.at(j); }
/// Find value for given assignment of values to variables
virtual double operator()(const DiscreteValues&) const = 0;
@ -124,6 +138,17 @@ public:
const Names& names = {}) const = 0;
/// @}
private:
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
/** Serialization function */
friend class boost::serialization::access;
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar& BOOST_SERIALIZATION_NVP(cardinalities_);
}
#endif
};
// DiscreteFactor

View File

@ -13,11 +13,12 @@
* @file TableFactor.cpp
* @brief discrete factor
* @date May 4, 2023
* @author Yoonwoo Kim
* @author Yoonwoo Kim, Varun Agrawal
*/
#include <gtsam/base/FastSet.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/discrete/TableFactor.h>
#include <gtsam/hybrid/HybridValues.h>
@ -33,8 +34,7 @@ TableFactor::TableFactor() {}
/* ************************************************************************ */
TableFactor::TableFactor(const DiscreteKeys& dkeys,
const TableFactor& potentials)
: DiscreteFactor(dkeys.indices()),
cardinalities_(potentials.cardinalities_) {
: DiscreteFactor(dkeys.indices(), dkeys.cardinalities()) {
sparse_table_ = potentials.sparse_table_;
denominators_ = potentials.denominators_;
sorted_dkeys_ = discreteKeys();
@ -44,11 +44,11 @@ TableFactor::TableFactor(const DiscreteKeys& dkeys,
/* ************************************************************************ */
TableFactor::TableFactor(const DiscreteKeys& dkeys,
const Eigen::SparseVector<double>& table)
: DiscreteFactor(dkeys.indices()), sparse_table_(table.size()) {
: DiscreteFactor(dkeys.indices(), dkeys.cardinalities()),
sparse_table_(table.size()) {
sparse_table_ = table;
double denom = table.size();
for (const DiscreteKey& dkey : dkeys) {
cardinalities_.insert(dkey);
denom /= dkey.second;
denominators_.insert(std::pair<Key, double>(dkey.first, denom));
}
@ -56,6 +56,10 @@ TableFactor::TableFactor(const DiscreteKeys& dkeys,
sort(sorted_dkeys_.begin(), sorted_dkeys_.end());
}
/* ************************************************************************ */
TableFactor::TableFactor(const DiscreteConditional& c)
: TableFactor(c.discreteKeys(), c.probabilities()) {}
/* ************************************************************************ */
Eigen::SparseVector<double> TableFactor::Convert(
const std::vector<double>& table) {
@ -435,18 +439,6 @@ std::vector<std::pair<DiscreteValues, double>> TableFactor::enumerate() const {
return result;
}
/* ************************************************************************ */
DiscreteKeys TableFactor::discreteKeys() const {
DiscreteKeys result;
for (auto&& key : keys()) {
DiscreteKey dkey(key, cardinality(key));
if (std::find(result.begin(), result.end(), dkey) == result.end()) {
result.push_back(dkey);
}
}
return result;
}
// Print out header.
/* ************************************************************************ */
string TableFactor::markdown(const KeyFormatter& keyFormatter,

View File

@ -12,7 +12,7 @@
/**
* @file TableFactor.h
* @date May 4, 2023
* @author Yoonwoo Kim
* @author Yoonwoo Kim, Varun Agrawal
*/
#pragma once
@ -32,6 +32,7 @@
namespace gtsam {
class DiscreteConditional;
class HybridValues;
/**
@ -44,8 +45,6 @@ class HybridValues;
*/
class GTSAM_EXPORT TableFactor : public DiscreteFactor {
protected:
/// Map of Keys and their cardinalities.
std::map<Key, size_t> cardinalities_;
/// SparseVector of nonzero probabilities.
Eigen::SparseVector<double> sparse_table_;
@ -75,7 +74,7 @@ class GTSAM_EXPORT TableFactor : public DiscreteFactor {
* @brief Return ith key in keys_ as a DiscreteKey
* @param i ith key in keys_
* @return DiscreteKey
* */
*/
DiscreteKey discreteKey(size_t i) const {
return DiscreteKey(keys_[i], cardinalities_.at(keys_[i]));
}
@ -142,6 +141,9 @@ class GTSAM_EXPORT TableFactor : public DiscreteFactor {
TableFactor(const DiscreteKey& key, const std::vector<double>& row)
: TableFactor(DiscreteKeys{key}, row) {}
/** Construct from a DiscreteConditional type */
explicit TableFactor(const DiscreteConditional& c);
/// @}
/// @name Testable
/// @{
@ -180,8 +182,6 @@ class GTSAM_EXPORT TableFactor : public DiscreteFactor {
static double safe_div(const double& a, const double& b);
size_t cardinality(Key j) const { return cardinalities_.at(j); }
/// divide by factor f (safely)
TableFactor operator/(const TableFactor& f) const {
return apply(f, safe_div);
@ -274,9 +274,6 @@ class GTSAM_EXPORT TableFactor : public DiscreteFactor {
/// Enumerate all values into a map from values to double.
std::vector<std::pair<DiscreteValues, double>> enumerate() const;
/// Return all the discrete keys associated with this factor.
DiscreteKeys discreteKeys() const;
/**
* @brief Prune the decision tree of discrete variables.
*

View File

@ -51,6 +51,11 @@ TEST( DecisionTreeFactor, constructors)
// Assert that error = -log(value)
EXPECT_DOUBLES_EQUAL(-log(f1(values)), f1.error(values), 1e-9);
// Construct from DiscreteConditional
DiscreteConditional conditional(X | Y = "1/1 2/3 1/4");
DecisionTreeFactor f4(conditional);
EXPECT_DOUBLES_EQUAL(0.8, f4(values), 1e-9);
}
/* ************************************************************************* */

View File

@ -93,7 +93,8 @@ void printTime(map<double, pair<chrono::microseconds, chrono::microseconds>>
for (auto&& kv : measured_time) {
cout << "dropout: " << kv.first
<< " | TableFactor time: " << kv.second.first.count()
<< " | DecisionTreeFactor time: " << kv.second.second.count() << endl;
<< " | DecisionTreeFactor time: " << kv.second.second.count() <<
endl;
}
}
@ -124,6 +125,13 @@ TEST(TableFactor, constructors) {
// Assert that error = -log(value)
EXPECT_DOUBLES_EQUAL(-log(f1(values)), f1.error(values), 1e-9);
// Construct from DiscreteConditional
DiscreteConditional conditional(X | Y = "1/1 2/3 1/4");
TableFactor f4(conditional);
// Manually constructed via inspection and comparison to DecisionTreeFactor
TableFactor expected(X & Y, "0.5 0.4 0.2 0.5 0.6 0.8");
EXPECT(assert_equal(expected, f4));
}
/* ************************************************************************* */
@ -156,7 +164,8 @@ TEST(TableFactor, multiplication) {
/* ************************************************************************* */
// Benchmark which compares runtime of multiplication of two TableFactors
// and two DecisionTreeFactors given sparsity from dense to 90% sparsity.
TEST(TableFactor, benchmark) {
// NOTE: Enable to run.
TEST_DISABLED(TableFactor, benchmark) {
DiscreteKey A(0, 5), B(1, 2), C(2, 5), D(3, 2), E(4, 5), F(5, 2), G(6, 3),
H(7, 2), I(8, 5), J(9, 7), K(10, 2), L(11, 3);

View File

@ -228,19 +228,19 @@ std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &discreteKeys) {
/**
* @brief Helper function to get the pruner functional.
*
* @param decisionTree The probability decision tree of only discrete keys.
* @param discreteProbs The probabilities of only discrete keys.
* @return std::function<GaussianConditional::shared_ptr(
* const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
*/
std::function<GaussianConditional::shared_ptr(
const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
GaussianMixture::prunerFunc(const DecisionTreeFactor &decisionTree) {
GaussianMixture::prunerFunc(const DecisionTreeFactor &discreteProbs) {
// Get the discrete keys as sets for the decision tree
// and the gaussian mixture.
auto decisionTreeKeySet = DiscreteKeysAsSet(decisionTree.discreteKeys());
auto discreteProbsKeySet = DiscreteKeysAsSet(discreteProbs.discreteKeys());
auto gaussianMixtureKeySet = DiscreteKeysAsSet(this->discreteKeys());
auto pruner = [decisionTree, decisionTreeKeySet, gaussianMixtureKeySet](
auto pruner = [discreteProbs, discreteProbsKeySet, gaussianMixtureKeySet](
const Assignment<Key> &choices,
const GaussianConditional::shared_ptr &conditional)
-> GaussianConditional::shared_ptr {
@ -249,8 +249,8 @@ GaussianMixture::prunerFunc(const DecisionTreeFactor &decisionTree) {
// Case where the gaussian mixture has the same
// discrete keys as the decision tree.
if (gaussianMixtureKeySet == decisionTreeKeySet) {
if (decisionTree(values) == 0.0) {
if (gaussianMixtureKeySet == discreteProbsKeySet) {
if (discreteProbs(values) == 0.0) {
// empty aka null pointer
std::shared_ptr<GaussianConditional> null;
return null;
@ -259,9 +259,9 @@ GaussianMixture::prunerFunc(const DecisionTreeFactor &decisionTree) {
}
} else {
std::vector<DiscreteKey> set_diff;
std::set_difference(decisionTreeKeySet.begin(), decisionTreeKeySet.end(),
gaussianMixtureKeySet.begin(),
gaussianMixtureKeySet.end(),
std::set_difference(
discreteProbsKeySet.begin(), discreteProbsKeySet.end(),
gaussianMixtureKeySet.begin(), gaussianMixtureKeySet.end(),
std::back_inserter(set_diff));
const std::vector<DiscreteValues> assignments =
@ -272,7 +272,7 @@ GaussianMixture::prunerFunc(const DecisionTreeFactor &decisionTree) {
// If any one of the sub-branches are non-zero,
// we need this conditional.
if (decisionTree(augmented_values) > 0.0) {
if (discreteProbs(augmented_values) > 0.0) {
return conditional;
}
}
@ -285,12 +285,12 @@ GaussianMixture::prunerFunc(const DecisionTreeFactor &decisionTree) {
}
/* *******************************************************************************/
void GaussianMixture::prune(const DecisionTreeFactor &decisionTree) {
auto decisionTreeKeySet = DiscreteKeysAsSet(decisionTree.discreteKeys());
void GaussianMixture::prune(const DecisionTreeFactor &discreteProbs) {
auto discreteProbsKeySet = DiscreteKeysAsSet(discreteProbs.discreteKeys());
auto gmKeySet = DiscreteKeysAsSet(this->discreteKeys());
// Functional which loops over all assignments and create a set of
// GaussianConditionals
auto pruner = prunerFunc(decisionTree);
auto pruner = prunerFunc(discreteProbs);
auto pruned_conditionals = conditionals_.apply(pruner);
conditionals_.root_ = pruned_conditionals.root_;

View File

@ -74,13 +74,13 @@ class GTSAM_EXPORT GaussianMixture
/**
* @brief Helper function to get the pruner functor.
*
* @param decisionTree The pruned discrete probability decision tree.
* @param discreteProbs The pruned discrete probabilities.
* @return std::function<GaussianConditional::shared_ptr(
* const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
*/
std::function<GaussianConditional::shared_ptr(
const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
prunerFunc(const DecisionTreeFactor &decisionTree);
prunerFunc(const DecisionTreeFactor &discreteProbs);
public:
/// @name Constructors
@ -234,12 +234,11 @@ class GTSAM_EXPORT GaussianMixture
/**
* @brief Prune the decision tree of Gaussian factors as per the discrete
* `decisionTree`.
* `discreteProbs`.
*
* @param decisionTree A pruned decision tree of discrete keys where the
* leaves are probabilities.
* @param discreteProbs A pruned set of probabilities for the discrete keys.
*/
void prune(const DecisionTreeFactor &decisionTree);
void prune(const DecisionTreeFactor &discreteProbs);
/**
* @brief Merge the Gaussian Factor Graphs in `this` and `sum` while

View File

@ -39,41 +39,41 @@ bool HybridBayesNet::equals(const This &bn, double tol) const {
/* ************************************************************************* */
DecisionTreeFactor::shared_ptr HybridBayesNet::discreteConditionals() const {
AlgebraicDecisionTree<Key> decisionTree;
AlgebraicDecisionTree<Key> discreteProbs;
// The canonical decision tree factor which will get
// the discrete conditionals added to it.
DecisionTreeFactor dtFactor;
DecisionTreeFactor discreteProbsFactor;
for (auto &&conditional : *this) {
if (conditional->isDiscrete()) {
// Convert to a DecisionTreeFactor and add it to the main factor.
DecisionTreeFactor f(*conditional->asDiscrete());
dtFactor = dtFactor * f;
discreteProbsFactor = discreteProbsFactor * f;
}
}
return std::make_shared<DecisionTreeFactor>(dtFactor);
return std::make_shared<DecisionTreeFactor>(discreteProbsFactor);
}
/* ************************************************************************* */
/**
* @brief Helper function to get the pruner functional.
*
* @param prunedDecisionTree The prob. decision tree of only discrete keys.
* @param prunedDiscreteProbs The prob. decision tree of only discrete keys.
* @param conditional Conditional to prune. Used to get full assignment.
* @return std::function<double(const Assignment<Key> &, double)>
*/
std::function<double(const Assignment<Key> &, double)> prunerFunc(
const DecisionTreeFactor &prunedDecisionTree,
const DecisionTreeFactor &prunedDiscreteProbs,
const HybridConditional &conditional) {
// Get the discrete keys as sets for the decision tree
// and the Gaussian mixture.
std::set<DiscreteKey> decisionTreeKeySet =
DiscreteKeysAsSet(prunedDecisionTree.discreteKeys());
std::set<DiscreteKey> discreteProbsKeySet =
DiscreteKeysAsSet(prunedDiscreteProbs.discreteKeys());
std::set<DiscreteKey> conditionalKeySet =
DiscreteKeysAsSet(conditional.discreteKeys());
auto pruner = [prunedDecisionTree, decisionTreeKeySet, conditionalKeySet](
auto pruner = [prunedDiscreteProbs, discreteProbsKeySet, conditionalKeySet](
const Assignment<Key> &choices,
double probability) -> double {
// This corresponds to 0 probability
@ -83,8 +83,8 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
DiscreteValues values(choices);
// Case where the Gaussian mixture has the same
// discrete keys as the decision tree.
if (conditionalKeySet == decisionTreeKeySet) {
if (prunedDecisionTree(values) == 0) {
if (conditionalKeySet == discreteProbsKeySet) {
if (prunedDiscreteProbs(values) == 0) {
return pruned_prob;
} else {
return probability;
@ -114,11 +114,12 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
}
// Now we generate the full assignment by enumerating
// over all keys in the prunedDecisionTree.
// over all keys in the prunedDiscreteProbs.
// First we find the differing keys
std::vector<DiscreteKey> set_diff;
std::set_difference(decisionTreeKeySet.begin(), decisionTreeKeySet.end(),
conditionalKeySet.begin(), conditionalKeySet.end(),
std::set_difference(discreteProbsKeySet.begin(),
discreteProbsKeySet.end(), conditionalKeySet.begin(),
conditionalKeySet.end(),
std::back_inserter(set_diff));
// Now enumerate over all assignments of the differing keys
@ -130,7 +131,7 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
// If any one of the sub-branches are non-zero,
// we need this probability.
if (prunedDecisionTree(augmented_values) > 0.0) {
if (prunedDiscreteProbs(augmented_values) > 0.0) {
return probability;
}
}
@ -144,8 +145,8 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
/* ************************************************************************* */
void HybridBayesNet::updateDiscreteConditionals(
const DecisionTreeFactor &prunedDecisionTree) {
KeyVector prunedTreeKeys = prunedDecisionTree.keys();
const DecisionTreeFactor &prunedDiscreteProbs) {
KeyVector prunedTreeKeys = prunedDiscreteProbs.keys();
// Loop with index since we need it later.
for (size_t i = 0; i < this->size(); i++) {
@ -153,18 +154,21 @@ void HybridBayesNet::updateDiscreteConditionals(
if (conditional->isDiscrete()) {
auto discrete = conditional->asDiscrete();
// Apply prunerFunc to the underlying AlgebraicDecisionTree
// Convert pointer from conditional to factor
auto discreteTree =
std::dynamic_pointer_cast<DecisionTreeFactor::ADT>(discrete);
// Apply prunerFunc to the underlying AlgebraicDecisionTree
DecisionTreeFactor::ADT prunedDiscreteTree =
discreteTree->apply(prunerFunc(prunedDecisionTree, *conditional));
discreteTree->apply(prunerFunc(prunedDiscreteProbs, *conditional));
gttic_(HybridBayesNet_MakeConditional);
// Create the new (hybrid) conditional
KeyVector frontals(discrete->frontals().begin(),
discrete->frontals().end());
auto prunedDiscrete = std::make_shared<DiscreteLookupTable>(
frontals.size(), conditional->discreteKeys(), prunedDiscreteTree);
conditional = std::make_shared<HybridConditional>(prunedDiscrete);
gttoc_(HybridBayesNet_MakeConditional);
// Add it back to the BayesNet
this->at(i) = conditional;
@ -175,10 +179,16 @@ void HybridBayesNet::updateDiscreteConditionals(
/* ************************************************************************* */
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
// Get the decision tree of only the discrete keys
auto discreteConditionals = this->discreteConditionals();
const auto decisionTree = discreteConditionals->prune(maxNrLeaves);
gttic_(HybridBayesNet_PruneDiscreteConditionals);
DecisionTreeFactor::shared_ptr discreteConditionals =
this->discreteConditionals();
const DecisionTreeFactor prunedDiscreteProbs =
discreteConditionals->prune(maxNrLeaves);
gttoc_(HybridBayesNet_PruneDiscreteConditionals);
this->updateDiscreteConditionals(decisionTree);
gttic_(HybridBayesNet_UpdateDiscreteConditionals);
this->updateDiscreteConditionals(prunedDiscreteProbs);
gttoc_(HybridBayesNet_UpdateDiscreteConditionals);
/* To Prune, we visitWith every leaf in the GaussianMixture.
* For each leaf, using the assignment we can check the discrete decision tree
@ -189,13 +199,14 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
HybridBayesNet prunedBayesNetFragment;
gttic_(HybridBayesNet_PruneMixtures);
// Go through all the conditionals in the
// Bayes Net and prune them as per decisionTree.
// Bayes Net and prune them as per prunedDiscreteProbs.
for (auto &&conditional : *this) {
if (auto gm = conditional->asMixture()) {
// Make a copy of the Gaussian mixture and prune it!
auto prunedGaussianMixture = std::make_shared<GaussianMixture>(*gm);
prunedGaussianMixture->prune(decisionTree); // imperative :-(
prunedGaussianMixture->prune(prunedDiscreteProbs); // imperative :-(
// Type-erase and add to the pruned Bayes Net fragment.
prunedBayesNetFragment.push_back(prunedGaussianMixture);
@ -205,6 +216,7 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
prunedBayesNetFragment.push_back(conditional);
}
}
gttoc_(HybridBayesNet_PruneMixtures);
return prunedBayesNetFragment;
}

View File

@ -224,9 +224,9 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
/**
* @brief Update the discrete conditionals with the pruned versions.
*
* @param prunedDecisionTree
* @param prunedDiscreteProbs
*/
void updateDiscreteConditionals(const DecisionTreeFactor &prunedDecisionTree);
void updateDiscreteConditionals(const DecisionTreeFactor &prunedDiscreteProbs);
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
/** Serialization function */

View File

@ -173,19 +173,18 @@ VectorValues HybridBayesTree::optimize(const DiscreteValues& assignment) const {
/* ************************************************************************* */
void HybridBayesTree::prune(const size_t maxNrLeaves) {
auto decisionTree =
this->roots_.at(0)->conditional()->asDiscrete();
auto discreteProbs = this->roots_.at(0)->conditional()->asDiscrete();
DecisionTreeFactor prunedDecisionTree = decisionTree->prune(maxNrLeaves);
decisionTree->root_ = prunedDecisionTree.root_;
DecisionTreeFactor prunedDiscreteProbs = discreteProbs->prune(maxNrLeaves);
discreteProbs->root_ = prunedDiscreteProbs.root_;
/// Helper struct for pruning the hybrid bayes tree.
struct HybridPrunerData {
/// The discrete decision tree after pruning.
DecisionTreeFactor prunedDecisionTree;
HybridPrunerData(const DecisionTreeFactor& prunedDecisionTree,
DecisionTreeFactor prunedDiscreteProbs;
HybridPrunerData(const DecisionTreeFactor& prunedDiscreteProbs,
const HybridBayesTree::sharedNode& parentClique)
: prunedDecisionTree(prunedDecisionTree) {}
: prunedDiscreteProbs(prunedDiscreteProbs) {}
/**
* @brief A function used during tree traversal that operates on each node
@ -205,13 +204,13 @@ void HybridBayesTree::prune(const size_t maxNrLeaves) {
if (conditional->isHybrid()) {
auto gaussianMixture = conditional->asMixture();
gaussianMixture->prune(parentData.prunedDecisionTree);
gaussianMixture->prune(parentData.prunedDiscreteProbs);
}
return parentData;
}
};
HybridPrunerData rootData(prunedDecisionTree, 0);
HybridPrunerData rootData(prunedDiscreteProbs, 0);
{
treeTraversal::no_op visitorPost;
// Limits OpenMP threads since we're mixing TBB and OpenMP

View File

@ -98,7 +98,7 @@ static GaussianFactorGraphTree addGaussian(
// TODO(dellaert): it's probably more efficient to first collect the discrete
// keys, and then loop over all assignments to populate a vector.
GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
gttic(assembleGraphTree);
gttic_(assembleGraphTree);
GaussianFactorGraphTree result;
@ -131,7 +131,7 @@ GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
}
}
gttoc(assembleGraphTree);
gttoc_(assembleGraphTree);
return result;
}
@ -190,7 +190,8 @@ discreteElimination(const HybridGaussianFactorGraph &factors,
/* ************************************************************************ */
// If any GaussianFactorGraph in the decision tree contains a nullptr, convert
// that leaf to an empty GaussianFactorGraph. Needed since the DecisionTree will
// otherwise create a GFG with a single (null) factor, which doesn't register as null.
// otherwise create a GFG with a single (null) factor,
// which doesn't register as null.
GaussianFactorGraphTree removeEmpty(const GaussianFactorGraphTree &sum) {
auto emptyGaussian = [](const GaussianFactorGraph &graph) {
bool hasNull =
@ -230,26 +231,14 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
return {nullptr, nullptr};
}
#ifdef HYBRID_TIMING
gttic_(hybrid_eliminate);
#endif
auto result = EliminatePreferCholesky(graph, frontalKeys);
#ifdef HYBRID_TIMING
gttoc_(hybrid_eliminate);
#endif
return result;
};
// Perform elimination!
DecisionTree<Key, Result> eliminationResults(factorGraphTree, eliminate);
#ifdef HYBRID_TIMING
tictoc_print_();
#endif
// Separate out decision tree into conditionals and remaining factors.
const auto [conditionals, newFactors] = unzip(eliminationResults);

View File

@ -112,8 +112,8 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
public:
using Base = HybridFactorGraph;
using This = HybridGaussianFactorGraph; ///< this class
using BaseEliminateable =
EliminateableFactorGraph<This>; ///< for elimination
///< for elimination
using BaseEliminateable = EliminateableFactorGraph<This>;
using shared_ptr = std::shared_ptr<This>; ///< shared_ptr to This
using Values = gtsam::Values; ///< backwards compatibility
@ -148,7 +148,8 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
/// @name Standard Interface
/// @{
using Base::error; // Expose error(const HybridValues&) method..
/// Expose error(const HybridValues&) method.
using Base::error;
/**
* @brief Compute error for each discrete assignment,