formatting changes
parent
373b109228
commit
01515d1001
|
@ -15,8 +15,8 @@
|
|||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/geometry/CalibratedCamera.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
|
||||
#include <boost/assign/std/vector.hpp>
|
||||
|
||||
|
@ -27,17 +27,15 @@ using namespace gtsam;
|
|||
/* ************************************************************************* */
|
||||
|
||||
void createExampleBALFile(const string& filename, const vector<Point3>& P,
|
||||
const Pose3& pose1, const Pose3& pose2, const Cal3Bundler& K =
|
||||
Cal3Bundler()) {
|
||||
|
||||
const Pose3& pose1, const Pose3& pose2,
|
||||
const Cal3Bundler& K = Cal3Bundler()) {
|
||||
// Class that will gather all data
|
||||
SfmData data;
|
||||
// Create two cameras and add them to data
|
||||
data.cameras.push_back(SfmCamera(pose1, K));
|
||||
data.cameras.push_back(SfmCamera(pose2, K));
|
||||
|
||||
for(const Point3& p: P) {
|
||||
|
||||
for (const Point3& p : P) {
|
||||
// Create the track
|
||||
SfmTrack track;
|
||||
track.p = p;
|
||||
|
@ -47,7 +45,7 @@ void createExampleBALFile(const string& filename, const vector<Point3>& P,
|
|||
|
||||
// Project points in both cameras
|
||||
for (size_t i = 0; i < 2; i++)
|
||||
track.measurements.push_back(make_pair(i, data.cameras[i].project(p)));
|
||||
track.measurements.push_back(make_pair(i, data.cameras[i].project(p)));
|
||||
|
||||
// Add track to data
|
||||
data.tracks.push_back(track);
|
||||
|
@ -59,7 +57,6 @@ void createExampleBALFile(const string& filename, const vector<Point3>& P,
|
|||
/* ************************************************************************* */
|
||||
|
||||
void create5PointExample1() {
|
||||
|
||||
// Create two cameras poses
|
||||
Rot3 aRb = Rot3::Yaw(M_PI_2);
|
||||
Point3 aTb(0.1, 0, 0);
|
||||
|
@ -67,8 +64,8 @@ void create5PointExample1() {
|
|||
|
||||
// Create test data, we need at least 5 points
|
||||
vector<Point3> P;
|
||||
P += Point3(0, 0, 1), Point3(-0.1, 0, 1), Point3(0.1, 0, 1), //
|
||||
Point3(0, 0.5, 0.5), Point3(0, -0.5, 0.5);
|
||||
P += Point3(0, 0, 1), Point3(-0.1, 0, 1), Point3(0.1, 0, 1), //
|
||||
Point3(0, 0.5, 0.5), Point3(0, -0.5, 0.5);
|
||||
|
||||
// Assumes example is run in ${GTSAM_TOP}/build/examples
|
||||
const string filename = "../../examples/Data/5pointExample1.txt";
|
||||
|
@ -78,7 +75,6 @@ void create5PointExample1() {
|
|||
/* ************************************************************************* */
|
||||
|
||||
void create5PointExample2() {
|
||||
|
||||
// Create two cameras poses
|
||||
Rot3 aRb = Rot3::Yaw(M_PI_2);
|
||||
Point3 aTb(10, 0, 0);
|
||||
|
@ -86,20 +82,19 @@ void create5PointExample2() {
|
|||
|
||||
// Create test data, we need at least 5 points
|
||||
vector<Point3> P;
|
||||
P += Point3(0, 0, 100), Point3(-10, 0, 100), Point3(10, 0, 100), //
|
||||
Point3(0, 50, 50), Point3(0, -50, 50), Point3(-20, 0, 80), Point3(20, -50, 80);
|
||||
P += Point3(0, 0, 100), Point3(-10, 0, 100), Point3(10, 0, 100), //
|
||||
Point3(0, 50, 50), Point3(0, -50, 50), Point3(-20, 0, 80),
|
||||
Point3(20, -50, 80);
|
||||
|
||||
// Assumes example is run in ${GTSAM_TOP}/build/examples
|
||||
const string filename = "../../examples/Data/5pointExample2.txt";
|
||||
Cal3Bundler K(500, 0, 0);
|
||||
createExampleBALFile(filename, P, pose1, pose2,K);
|
||||
createExampleBALFile(filename, P, pose1, pose2, K);
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
void create18PointExample1() {
|
||||
|
||||
// Create two cameras poses
|
||||
Rot3 aRb = Rot3::Yaw(M_PI_2);
|
||||
Point3 aTb(0.1, 0, 0);
|
||||
|
@ -107,11 +102,11 @@ void create18PointExample1() {
|
|||
|
||||
// Create test data, we need 15 points
|
||||
vector<Point3> P;
|
||||
P += Point3(0, 0, 1), Point3(-0.1, 0, 1), Point3(0.1, 0, 1), //
|
||||
Point3(0, 0.5, 0.5), Point3(0, -0.5, 0.5), Point3(-1, -0.5, 2), //
|
||||
Point3(-1, 0.5, 2), Point3(0.25, -0.5, 1.5), Point3(0.25, 0.5, 1.5),//
|
||||
Point3(-0.1, -0.5, 0.5), Point3(0.1, -0.5, 1), Point3(0.1, 0.5, 1), //
|
||||
Point3(-0.1, 0, 0.5), Point3(-0.1, 0.5, 0.5), Point3(0, 0, 0.5), //
|
||||
P += Point3(0, 0, 1), Point3(-0.1, 0, 1), Point3(0.1, 0, 1), //
|
||||
Point3(0, 0.5, 0.5), Point3(0, -0.5, 0.5), Point3(-1, -0.5, 2), //
|
||||
Point3(-1, 0.5, 2), Point3(0.25, -0.5, 1.5), Point3(0.25, 0.5, 1.5), //
|
||||
Point3(-0.1, -0.5, 0.5), Point3(0.1, -0.5, 1), Point3(0.1, 0.5, 1), //
|
||||
Point3(-0.1, 0, 0.5), Point3(-0.1, 0.5, 0.5), Point3(0, 0, 0.5), //
|
||||
Point3(0.1, -0.5, 0.5), Point3(0.1, 0, 0.5), Point3(0.1, 0.5, 0.5);
|
||||
|
||||
// Assumes example is run in ${GTSAM_TOP}/build/examples
|
||||
|
@ -128,9 +123,9 @@ void create11PointExample1() {
|
|||
|
||||
// Create test data, we need 11 points
|
||||
vector<Point3> P;
|
||||
P += Point3(0, 0, 100), Point3(-10, 0, 100), Point3(10, 0, 100), //
|
||||
Point3(0, 50, 50), Point3(0, -50, 50), Point3(-20, 0, 80), //
|
||||
Point3(20, -50, 80), Point3(0, 0, 100), Point3(0, 0, 100), //
|
||||
P += Point3(0, 0, 100), Point3(-10, 0, 100), Point3(10, 0, 100), //
|
||||
Point3(0, 50, 50), Point3(0, -50, 50), Point3(-20, 0, 80), //
|
||||
Point3(20, -50, 80), Point3(0, 0, 100), Point3(0, 0, 100), //
|
||||
Point3(-10, 50, 50), Point3(10, -50, 50);
|
||||
|
||||
// Assumes example is run in ${GTSAM_TOP}/build/examples
|
||||
|
@ -150,4 +145,3 @@ int main(int argc, char* argv[]) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
|
@ -5,26 +5,24 @@
|
|||
* @date December 17, 2013
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/EssentialMatrixFactor.h>
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/nonlinear/expressionTesting.h>
|
||||
#include <gtsam/nonlinear/ExpressionFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/geometry/CalibratedCamera.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <gtsam/geometry/CalibratedCamera.h>
|
||||
#include <gtsam/nonlinear/ExpressionFactor.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/expressionTesting.h>
|
||||
#include <gtsam/slam/EssentialMatrixFactor.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// Noise model for first type of factor is evaluating algebraic error
|
||||
noiseModel::Isotropic::shared_ptr model1 = noiseModel::Isotropic::Sigma(1,
|
||||
0.01);
|
||||
noiseModel::Isotropic::shared_ptr model1 =
|
||||
noiseModel::Isotropic::Sigma(1, 0.01);
|
||||
// Noise model for second type of factor is evaluating pixel coordinates
|
||||
noiseModel::Unit::shared_ptr model2 = noiseModel::Unit::Create(2);
|
||||
|
||||
|
@ -45,30 +43,22 @@ PinholeCamera<Cal3_S2> camera2(data.cameras[1].pose(), trueK);
|
|||
Rot3 trueRotation(c1Rc2);
|
||||
Unit3 trueDirection(c1Tc2);
|
||||
EssentialMatrix trueE(trueRotation, trueDirection);
|
||||
double baseline = 0.1; // actual baseline of the camera
|
||||
double baseline = 0.1; // actual baseline of the camera
|
||||
|
||||
Point2 pA(size_t i) {
|
||||
return data.tracks[i].measurements[0].second;
|
||||
}
|
||||
Point2 pB(size_t i) {
|
||||
return data.tracks[i].measurements[1].second;
|
||||
}
|
||||
Vector vA(size_t i) {
|
||||
return EssentialMatrix::Homogeneous(pA(i));
|
||||
}
|
||||
Vector vB(size_t i) {
|
||||
return EssentialMatrix::Homogeneous(pB(i));
|
||||
}
|
||||
Point2 pA(size_t i) { return data.tracks[i].measurements[0].second; }
|
||||
Point2 pB(size_t i) { return data.tracks[i].measurements[1].second; }
|
||||
Vector vA(size_t i) { return EssentialMatrix::Homogeneous(pA(i)); }
|
||||
Vector vB(size_t i) { return EssentialMatrix::Homogeneous(pB(i)); }
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor, testData) {
|
||||
TEST(EssentialMatrixFactor, testData) {
|
||||
CHECK(readOK);
|
||||
|
||||
// Check E matrix
|
||||
Matrix expected(3, 3);
|
||||
expected << 0, 0, 0, 0, 0, -0.1, 0.1, 0, 0;
|
||||
Matrix aEb_matrix = skewSymmetric(c1Tc2.x(), c1Tc2.y(), c1Tc2.z())
|
||||
* c1Rc2.matrix();
|
||||
Matrix aEb_matrix =
|
||||
skewSymmetric(c1Tc2.x(), c1Tc2.y(), c1Tc2.z()) * c1Rc2.matrix();
|
||||
EXPECT(assert_equal(expected, aEb_matrix, 1e-8));
|
||||
|
||||
// Check some projections
|
||||
|
@ -90,7 +80,7 @@ TEST (EssentialMatrixFactor, testData) {
|
|||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor, factor) {
|
||||
TEST(EssentialMatrixFactor, factor) {
|
||||
Key key(1);
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
EssentialMatrixFactor factor(key, pA(i), pB(i), model1);
|
||||
|
@ -104,10 +94,11 @@ TEST (EssentialMatrixFactor, factor) {
|
|||
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
Matrix Hexpected;
|
||||
typedef Eigen::Matrix<double,1,1> Vector1;
|
||||
typedef Eigen::Matrix<double, 1, 1> Vector1;
|
||||
Hexpected = numericalDerivative11<Vector1, EssentialMatrix>(
|
||||
boost::bind(&EssentialMatrixFactor::evaluateError, &factor, _1,
|
||||
boost::none), trueE);
|
||||
boost::none),
|
||||
trueE);
|
||||
|
||||
// Verify the Jacobian is correct
|
||||
EXPECT(assert_equal(Hexpected, Hactual, 1e-8));
|
||||
|
@ -118,10 +109,10 @@ TEST (EssentialMatrixFactor, factor) {
|
|||
TEST(EssentialMatrixFactor, ExpressionFactor) {
|
||||
Key key(1);
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
boost::function<double(const EssentialMatrix&, OptionalJacobian<1, 5>)> f =
|
||||
boost::function<double(const EssentialMatrix &, OptionalJacobian<1, 5>)> f =
|
||||
boost::bind(&EssentialMatrix::error, _1, vA(i), vB(i), _2);
|
||||
Expression<EssentialMatrix> E_(key); // leaf expression
|
||||
Expression<double> expr(f, E_); // unary expression
|
||||
Expression<EssentialMatrix> E_(key); // leaf expression
|
||||
Expression<double> expr(f, E_); // unary expression
|
||||
|
||||
// Test the derivatives using Paul's magic
|
||||
Values values;
|
||||
|
@ -144,13 +135,16 @@ TEST(EssentialMatrixFactor, ExpressionFactor) {
|
|||
TEST(EssentialMatrixFactor, ExpressionFactorRotationOnly) {
|
||||
Key key(1);
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
boost::function<double(const EssentialMatrix&, OptionalJacobian<1, 5>)> f =
|
||||
boost::function<double(const EssentialMatrix &, OptionalJacobian<1, 5>)> f =
|
||||
boost::bind(&EssentialMatrix::error, _1, vA(i), vB(i), _2);
|
||||
boost::function<EssentialMatrix(const Rot3&, const Unit3&, OptionalJacobian<5, 3>,
|
||||
OptionalJacobian<5, 2>)> g;
|
||||
boost::function<EssentialMatrix(const Rot3 &, const Unit3 &,
|
||||
OptionalJacobian<5, 3>,
|
||||
OptionalJacobian<5, 2>)>
|
||||
g;
|
||||
Expression<Rot3> R_(key);
|
||||
Expression<Unit3> d_(trueDirection);
|
||||
Expression<EssentialMatrix> E_(&EssentialMatrix::FromRotationAndDirection, R_, d_);
|
||||
Expression<EssentialMatrix> E_(&EssentialMatrix::FromRotationAndDirection,
|
||||
R_, d_);
|
||||
Expression<double> expr(f, E_);
|
||||
|
||||
// Test the derivatives using Paul's magic
|
||||
|
@ -171,7 +165,7 @@ TEST(EssentialMatrixFactor, ExpressionFactorRotationOnly) {
|
|||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor, minimization) {
|
||||
TEST(EssentialMatrixFactor, minimization) {
|
||||
// Here we want to optimize directly on essential matrix constraints
|
||||
// Yi Ma's algorithm (Ma01ijcv) is a bit cumbersome to implement,
|
||||
// but GTSAM does the equivalent anyway, provided we give the right
|
||||
|
@ -190,8 +184,8 @@ TEST (EssentialMatrixFactor, minimization) {
|
|||
|
||||
// Check error at initial estimate
|
||||
Values initial;
|
||||
EssentialMatrix initialE = trueE.retract(
|
||||
(Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
|
||||
EssentialMatrix initialE =
|
||||
trueE.retract((Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
|
||||
initial.insert(1, initialE);
|
||||
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
|
||||
EXPECT_DOUBLES_EQUAL(643.26, graph.error(initial), 1e-2);
|
||||
|
@ -214,11 +208,10 @@ TEST (EssentialMatrixFactor, minimization) {
|
|||
// Check errors individually
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
EXPECT_DOUBLES_EQUAL(0, actual.error(vA(i), vB(i)), 1e-6);
|
||||
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor2, factor) {
|
||||
TEST(EssentialMatrixFactor2, factor) {
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
EssentialMatrixFactor2 factor(100, i, pA(i), pB(i), model2);
|
||||
|
||||
|
@ -234,11 +227,13 @@ TEST (EssentialMatrixFactor2, factor) {
|
|||
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
Matrix Hexpected1, Hexpected2;
|
||||
boost::function<Vector(const EssentialMatrix&, double)> f = boost::bind(
|
||||
&EssentialMatrixFactor2::evaluateError, &factor, _1, _2, boost::none,
|
||||
boost::none);
|
||||
Hexpected1 = numericalDerivative21<Vector2, EssentialMatrix, double>(f, trueE, d);
|
||||
Hexpected2 = numericalDerivative22<Vector2, EssentialMatrix, double>(f, trueE, d);
|
||||
boost::function<Vector(const EssentialMatrix &, double)> f =
|
||||
boost::bind(&EssentialMatrixFactor2::evaluateError, &factor, _1, _2,
|
||||
boost::none, boost::none);
|
||||
Hexpected1 =
|
||||
numericalDerivative21<Vector2, EssentialMatrix, double>(f, trueE, d);
|
||||
Hexpected2 =
|
||||
numericalDerivative22<Vector2, EssentialMatrix, double>(f, trueE, d);
|
||||
|
||||
// Verify the Jacobian is correct
|
||||
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-8));
|
||||
|
@ -247,7 +242,7 @@ TEST (EssentialMatrixFactor2, factor) {
|
|||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor2, minimization) {
|
||||
TEST(EssentialMatrixFactor2, minimization) {
|
||||
// Here we want to optimize for E and inverse depths at the same time
|
||||
|
||||
// We start with a factor graph and add constraints to it
|
||||
|
@ -290,8 +285,7 @@ TEST (EssentialMatrixFactor2, minimization) {
|
|||
EssentialMatrix bodyE = cRb.inverse() * trueE;
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor3, factor) {
|
||||
|
||||
TEST(EssentialMatrixFactor3, factor) {
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
EssentialMatrixFactor3 factor(100, i, pA(i), pB(i), cRb, model2);
|
||||
|
||||
|
@ -307,11 +301,13 @@ TEST (EssentialMatrixFactor3, factor) {
|
|||
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
Matrix Hexpected1, Hexpected2;
|
||||
boost::function<Vector(const EssentialMatrix&, double)> f = boost::bind(
|
||||
&EssentialMatrixFactor3::evaluateError, &factor, _1, _2, boost::none,
|
||||
boost::none);
|
||||
Hexpected1 = numericalDerivative21<Vector2, EssentialMatrix, double>(f, bodyE, d);
|
||||
Hexpected2 = numericalDerivative22<Vector2, EssentialMatrix, double>(f, bodyE, d);
|
||||
boost::function<Vector(const EssentialMatrix &, double)> f =
|
||||
boost::bind(&EssentialMatrixFactor3::evaluateError, &factor, _1, _2,
|
||||
boost::none, boost::none);
|
||||
Hexpected1 =
|
||||
numericalDerivative21<Vector2, EssentialMatrix, double>(f, bodyE, d);
|
||||
Hexpected2 =
|
||||
numericalDerivative22<Vector2, EssentialMatrix, double>(f, bodyE, d);
|
||||
|
||||
// Verify the Jacobian is correct
|
||||
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-8));
|
||||
|
@ -320,13 +316,13 @@ TEST (EssentialMatrixFactor3, factor) {
|
|||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor3, minimization) {
|
||||
|
||||
TEST(EssentialMatrixFactor3, minimization) {
|
||||
// As before, we start with a factor graph and add constraints to it
|
||||
NonlinearFactorGraph graph;
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
// but now we specify the rotation bRc
|
||||
graph.emplace_shared<EssentialMatrixFactor3>(100, i, pA(i), pB(i), cRb, model2);
|
||||
graph.emplace_shared<EssentialMatrixFactor3>(100, i, pA(i), pB(i), cRb,
|
||||
model2);
|
||||
|
||||
// Check error at ground truth
|
||||
Values truth;
|
||||
|
@ -368,7 +364,6 @@ TEST(EssentialMatrixFactor4, factor) {
|
|||
Vector actual = factor.evaluateError(trueE, trueK, HEactual, HKactual);
|
||||
EXPECT(assert_equal(expected, actual, 1e-7));
|
||||
|
||||
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
Matrix HEexpected;
|
||||
Matrix HKexpected;
|
||||
|
@ -445,13 +440,14 @@ TEST(EssentialMatrixFactor4, minimizationWithStrongCal3S2Prior) {
|
|||
EssentialMatrix initialE =
|
||||
trueE.retract((Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
|
||||
initial.insert(1, initialE);
|
||||
initial.insert(2, trueK);
|
||||
initial.insert(2, trueK);
|
||||
|
||||
// add prior factor for calibration
|
||||
Vector5 priorNoiseModelSigma;
|
||||
priorNoiseModelSigma << 10, 10, 10, 10, 10;
|
||||
graph.emplace_shared<PriorFactor<Cal3_S2>>(2, trueK, noiseModel::Diagonal::Sigmas(priorNoiseModelSigma));
|
||||
|
||||
graph.emplace_shared<PriorFactor<Cal3_S2>>(
|
||||
2, trueK, noiseModel::Diagonal::Sigmas(priorNoiseModelSigma));
|
||||
|
||||
LevenbergMarquardtOptimizer optimizer(graph, initial);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
|
@ -476,8 +472,8 @@ TEST(EssentialMatrixFactor4, minimizationWithStrongCal3S2Prior) {
|
|||
//*************************************************************************
|
||||
TEST(EssentialMatrixFactor4, minimizationWithWeakCal3S2Prior) {
|
||||
// We need 7 points here as the prior on the focal length parameters is weak
|
||||
// and the initialization is noisy. So in total we are trying to optimize 7 DOF,
|
||||
// with a strong prior on the remaining 3 DOF.
|
||||
// and the initialization is noisy. So in total we are trying to optimize 7
|
||||
// DOF, with a strong prior on the remaining 3 DOF.
|
||||
NonlinearFactorGraph graph;
|
||||
for (size_t i = 0; i < 7; i++)
|
||||
graph.emplace_shared<EssentialMatrixFactor4<Cal3_S2>>(1, 2, pA(i), pB(i),
|
||||
|
@ -501,8 +497,9 @@ TEST(EssentialMatrixFactor4, minimizationWithWeakCal3S2Prior) {
|
|||
// add prior factor for calibration
|
||||
Vector5 priorNoiseModelSigma;
|
||||
priorNoiseModelSigma << 20, 20, 1, 1, 1;
|
||||
graph.emplace_shared<PriorFactor<Cal3_S2>>(2, initialK, noiseModel::Diagonal::Sigmas(priorNoiseModelSigma));
|
||||
|
||||
graph.emplace_shared<PriorFactor<Cal3_S2>>(
|
||||
2, initialK, noiseModel::Diagonal::Sigmas(priorNoiseModelSigma));
|
||||
|
||||
LevenbergMarquardtOptimizer optimizer(graph, initial);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
|
@ -528,8 +525,8 @@ TEST(EssentialMatrixFactor4, minimizationWithWeakCal3S2Prior) {
|
|||
TEST(EssentialMatrixFactor4, minimizationWithStrongCal3BundlerPrior) {
|
||||
NonlinearFactorGraph graph;
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
graph.emplace_shared<EssentialMatrixFactor4<Cal3Bundler>>(1, 2, pA(i), pB(i),
|
||||
model1);
|
||||
graph.emplace_shared<EssentialMatrixFactor4<Cal3Bundler>>(1, 2, pA(i),
|
||||
pB(i), model1);
|
||||
Cal3Bundler trueK(1, 0, 0, 0, 0, /*tolerance=*/5e-3);
|
||||
// Check error at ground truth
|
||||
Values truth;
|
||||
|
@ -548,8 +545,9 @@ TEST(EssentialMatrixFactor4, minimizationWithStrongCal3BundlerPrior) {
|
|||
// add prior factor for calibration
|
||||
Vector3 priorNoiseModelSigma;
|
||||
priorNoiseModelSigma << 0.1, 0.1, 0.1;
|
||||
graph.emplace_shared<PriorFactor<Cal3Bundler>>(2, trueK, noiseModel::Diagonal::Sigmas(priorNoiseModelSigma));
|
||||
|
||||
graph.emplace_shared<PriorFactor<Cal3Bundler>>(
|
||||
2, trueK, noiseModel::Diagonal::Sigmas(priorNoiseModelSigma));
|
||||
|
||||
LevenbergMarquardtOptimizer optimizer(graph, initial);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
|
@ -571,7 +569,6 @@ TEST(EssentialMatrixFactor4, minimizationWithStrongCal3BundlerPrior) {
|
|||
1e-6);
|
||||
}
|
||||
|
||||
|
||||
} // namespace example1
|
||||
|
||||
//*************************************************************************
|
||||
|
@ -585,14 +582,10 @@ Rot3 aRb = data.cameras[1].pose().rotation();
|
|||
Point3 aTb = data.cameras[1].pose().translation();
|
||||
EssentialMatrix trueE(aRb, Unit3(aTb));
|
||||
|
||||
double baseline = 10; // actual baseline of the camera
|
||||
double baseline = 10; // actual baseline of the camera
|
||||
|
||||
Point2 pA(size_t i) {
|
||||
return data.tracks[i].measurements[0].second;
|
||||
}
|
||||
Point2 pB(size_t i) {
|
||||
return data.tracks[i].measurements[1].second;
|
||||
}
|
||||
Point2 pA(size_t i) { return data.tracks[i].measurements[0].second; }
|
||||
Point2 pB(size_t i) { return data.tracks[i].measurements[1].second; }
|
||||
|
||||
Cal3Bundler trueK = Cal3Bundler(500, 0, 0);
|
||||
boost::shared_ptr<Cal3Bundler> K = boost::make_shared<Cal3Bundler>(trueK);
|
||||
|
@ -622,8 +615,8 @@ TEST(EssentialMatrixFactor, extraMinimization) {
|
|||
|
||||
// Check error at initial estimate
|
||||
Values initial;
|
||||
EssentialMatrix initialE = trueE.retract(
|
||||
(Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
|
||||
EssentialMatrix initialE =
|
||||
trueE.retract((Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
|
||||
initial.insert(1, initialE);
|
||||
|
||||
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
|
||||
|
@ -647,11 +640,10 @@ TEST(EssentialMatrixFactor, extraMinimization) {
|
|||
// Check errors individually
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
EXPECT_DOUBLES_EQUAL(0, actual.error(vA(i), vB(i)), 1e-6);
|
||||
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor2, extraTest) {
|
||||
TEST(EssentialMatrixFactor2, extraTest) {
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
EssentialMatrixFactor2 factor(100, i, pA(i), pB(i), model2, K);
|
||||
|
||||
|
@ -667,11 +659,13 @@ TEST (EssentialMatrixFactor2, extraTest) {
|
|||
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
Matrix Hexpected1, Hexpected2;
|
||||
boost::function<Vector(const EssentialMatrix&, double)> f = boost::bind(
|
||||
&EssentialMatrixFactor2::evaluateError, &factor, _1, _2, boost::none,
|
||||
boost::none);
|
||||
Hexpected1 = numericalDerivative21<Vector2, EssentialMatrix, double>(f, trueE, d);
|
||||
Hexpected2 = numericalDerivative22<Vector2, EssentialMatrix, double>(f, trueE, d);
|
||||
boost::function<Vector(const EssentialMatrix &, double)> f =
|
||||
boost::bind(&EssentialMatrixFactor2::evaluateError, &factor, _1, _2,
|
||||
boost::none, boost::none);
|
||||
Hexpected1 =
|
||||
numericalDerivative21<Vector2, EssentialMatrix, double>(f, trueE, d);
|
||||
Hexpected2 =
|
||||
numericalDerivative22<Vector2, EssentialMatrix, double>(f, trueE, d);
|
||||
|
||||
// Verify the Jacobian is correct
|
||||
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-6));
|
||||
|
@ -680,14 +674,15 @@ TEST (EssentialMatrixFactor2, extraTest) {
|
|||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor2, extraMinimization) {
|
||||
TEST(EssentialMatrixFactor2, extraMinimization) {
|
||||
// Additional test with camera moving in positive X direction
|
||||
|
||||
// We start with a factor graph and add constraints to it
|
||||
// Noise sigma is 1, assuming pixel measurements
|
||||
NonlinearFactorGraph graph;
|
||||
for (size_t i = 0; i < data.number_tracks(); i++)
|
||||
graph.emplace_shared<EssentialMatrixFactor2>(100, i, pA(i), pB(i), model2, K);
|
||||
graph.emplace_shared<EssentialMatrixFactor2>(100, i, pA(i), pB(i), model2,
|
||||
K);
|
||||
|
||||
// Check error at ground truth
|
||||
Values truth;
|
||||
|
@ -715,8 +710,7 @@ TEST (EssentialMatrixFactor2, extraMinimization) {
|
|||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor3, extraTest) {
|
||||
|
||||
TEST(EssentialMatrixFactor3, extraTest) {
|
||||
// The "true E" in the body frame is
|
||||
EssentialMatrix bodyE = cRb.inverse() * trueE;
|
||||
|
||||
|
@ -735,18 +729,19 @@ TEST (EssentialMatrixFactor3, extraTest) {
|
|||
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
Matrix Hexpected1, Hexpected2;
|
||||
boost::function<Vector(const EssentialMatrix&, double)> f = boost::bind(
|
||||
&EssentialMatrixFactor3::evaluateError, &factor, _1, _2, boost::none,
|
||||
boost::none);
|
||||
Hexpected1 = numericalDerivative21<Vector2, EssentialMatrix, double>(f, bodyE, d);
|
||||
Hexpected2 = numericalDerivative22<Vector2, EssentialMatrix, double>(f, bodyE, d);
|
||||
boost::function<Vector(const EssentialMatrix &, double)> f =
|
||||
boost::bind(&EssentialMatrixFactor3::evaluateError, &factor, _1, _2,
|
||||
boost::none, boost::none);
|
||||
Hexpected1 =
|
||||
numericalDerivative21<Vector2, EssentialMatrix, double>(f, bodyE, d);
|
||||
Hexpected2 =
|
||||
numericalDerivative22<Vector2, EssentialMatrix, double>(f, bodyE, d);
|
||||
|
||||
// Verify the Jacobian is correct
|
||||
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-6));
|
||||
EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
TEST(EssentialMatrixFactor4, minimizationWithStrongCal3BundlerPrior2) {
|
||||
// Additional test with camera moving in positive X direction
|
||||
|
@ -773,13 +768,14 @@ TEST(EssentialMatrixFactor4, minimizationWithStrongCal3BundlerPrior2) {
|
|||
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
|
||||
EXPECT_DOUBLES_EQUAL(643.62, graph.error(initial), 1e-2);
|
||||
#else
|
||||
EXPECT_DOUBLES_EQUAL(639.84, graph.error(initial), 1e-2); // TODO: fix this
|
||||
EXPECT_DOUBLES_EQUAL(639.84, graph.error(initial), 1e-2); // TODO: fix this
|
||||
#endif
|
||||
|
||||
// add prior factor on calibration
|
||||
Vector3 priorNoiseModelSigma;
|
||||
priorNoiseModelSigma << 1, 1, 1;
|
||||
graph.emplace_shared<PriorFactor<Cal3Bundler>>(2, trueK, noiseModel::Diagonal::Sigmas(priorNoiseModelSigma));
|
||||
graph.emplace_shared<PriorFactor<Cal3Bundler>>(
|
||||
2, trueK, noiseModel::Diagonal::Sigmas(priorNoiseModelSigma));
|
||||
|
||||
// Optimize
|
||||
LevenbergMarquardtOptimizer optimizer(graph, initial);
|
||||
|
@ -788,8 +784,8 @@ TEST(EssentialMatrixFactor4, minimizationWithStrongCal3BundlerPrior2) {
|
|||
// Check result
|
||||
EssentialMatrix actualE = result.at<EssentialMatrix>(1);
|
||||
Cal3Bundler actualK = result.at<Cal3Bundler>(2);
|
||||
EXPECT(assert_equal(trueE, actualE, 1e-1)); // TODO: tighten tolerance
|
||||
EXPECT(assert_equal(trueK, actualK, 1e-1)); // TODO: tighten tolerance
|
||||
EXPECT(assert_equal(trueE, actualE, 1e-1)); // TODO: tighten tolerance
|
||||
EXPECT(assert_equal(trueK, actualK, 1e-1)); // TODO: tighten tolerance
|
||||
|
||||
// Check error at result
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
|
||||
|
@ -803,7 +799,6 @@ TEST(EssentialMatrixFactor4, minimizationWithStrongCal3BundlerPrior2) {
|
|||
1e-6);
|
||||
}
|
||||
*/
|
||||
|
||||
} // namespace example2
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -812,4 +807,3 @@ int main() {
|
|||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
Loading…
Reference in New Issue