removed tests that are not applicable - merging to develop now
parent
d8eeaf9cb3
commit
00eee7cd19
|
@ -699,91 +699,6 @@ TEST( SmartStereoProjectionFactorPP, 3poses_smart_projection_factor_optimization
|
|||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
|
||||
}
|
||||
|
||||
/* *************************************************************************
|
||||
TEST( SmartStereoProjectionFactorPP, body_P_sensor ) {
|
||||
|
||||
// camera has some displacement
|
||||
Pose3 body_P_sensor = Pose3(Rot3::Ypr(-0.01, 0., -0.05), Point3(0.1, 0, 0.1));
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
StereoCamera cam1(pose1.compose(body_P_sensor), K2);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
StereoCamera cam2(pose2.compose(body_P_sensor), K2);
|
||||
|
||||
// create third camera 1 meter above the first camera
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
||||
StereoCamera cam3(pose3.compose(body_P_sensor), K2);
|
||||
|
||||
// three landmarks ~5 meters infront of camera
|
||||
Point3 landmark1(5, 0.5, 1.2);
|
||||
Point3 landmark2(5, -0.5, 1.2);
|
||||
Point3 landmark3(3, 0, 3.0);
|
||||
|
||||
// 1. Project three landmarks into three cameras and triangulate
|
||||
vector<StereoPoint2> measurements_l1 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark1);
|
||||
vector<StereoPoint2> measurements_l2 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark2);
|
||||
vector<StereoPoint2> measurements_l3 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark3);
|
||||
|
||||
KeyVector views;
|
||||
views.push_back(x1);
|
||||
views.push_back(x2);
|
||||
views.push_back(x3);
|
||||
|
||||
SmartStereoProjectionParams smart_params;
|
||||
smart_params.triangulation.enableEPI = true;
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, smart_params, body_P_sensor));
|
||||
smartFactor1->add(measurements_l1, views, K2);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, smart_params, body_P_sensor));
|
||||
smartFactor2->add(measurements_l2, views, K2);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, smart_params, body_P_sensor));
|
||||
smartFactor3->add(measurements_l3, views, K2);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, pose1, noisePrior);
|
||||
graph.addPrior(x2, pose2, noisePrior);
|
||||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, pose1);
|
||||
values.insert(x2, pose2);
|
||||
// initialize third pose with some noise, we expect it to move back to original pose3
|
||||
values.insert(x3, pose3 * noise_pose);
|
||||
EXPECT(
|
||||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||
|
||||
// cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
|
||||
EXPECT_DOUBLES_EQUAL(953392.32838422502, graph.error(values), 1e-7); // initial error
|
||||
|
||||
Values result;
|
||||
gttic_(SmartStereoProjectionFactorPP);
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
||||
result = optimizer.optimize();
|
||||
gttoc_(SmartStereoProjectionFactorPP);
|
||||
tictoc_finishedIteration_();
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
|
||||
|
||||
// result.print("results of 3 camera, 3 landmark optimization \n");
|
||||
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
||||
}
|
||||
/* *************************************************************************
|
||||
TEST( SmartStereoProjectionFactorPP, body_P_sensor_monocular ){
|
||||
// make a realistic calibration matrix
|
||||
|
@ -885,143 +800,6 @@ TEST( SmartStereoProjectionFactorPP, body_P_sensor_monocular ){
|
|||
result = optimizer.optimize();
|
||||
EXPECT(assert_equal(bodyPose3,result.at<Pose3>(x3)));
|
||||
}
|
||||
/* *************************************************************************
|
||||
TEST( SmartStereoProjectionFactorPP, jacobianSVD ) {
|
||||
|
||||
KeyVector views;
|
||||
views.push_back(x1);
|
||||
views.push_back(x2);
|
||||
views.push_back(x3);
|
||||
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
StereoCamera cam1(pose1, K);
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
StereoCamera cam2(pose2, K);
|
||||
// create third camera 1 meter above the first camera
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
||||
StereoCamera cam3(pose3, K);
|
||||
|
||||
// three landmarks ~5 meters infront of camera
|
||||
Point3 landmark1(5, 0.5, 1.2);
|
||||
Point3 landmark2(5, -0.5, 1.2);
|
||||
Point3 landmark3(3, 0, 3.0);
|
||||
|
||||
// 1. Project three landmarks into three cameras and triangulate
|
||||
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark1);
|
||||
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark2);
|
||||
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark3);
|
||||
|
||||
SmartStereoProjectionParams params;
|
||||
params.setLinearizationMode(JACOBIAN_SVD);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor1( new SmartStereoProjectionFactorPP(model, params));
|
||||
smartFactor1->add(measurements_cam1, views, K);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, params));
|
||||
smartFactor2->add(measurements_cam2, views, K);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, params));
|
||||
smartFactor3->add(measurements_cam3, views, K);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, pose1, noisePrior);
|
||||
graph.addPrior(x2, pose2, noisePrior);
|
||||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, pose1);
|
||||
values.insert(x2, pose2);
|
||||
values.insert(x3, pose3 * noise_pose);
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
||||
result = optimizer.optimize();
|
||||
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
||||
}
|
||||
|
||||
/* *************************************************************************
|
||||
TEST( SmartStereoProjectionFactorPP, jacobianSVDwithMissingValues ) {
|
||||
|
||||
KeyVector views;
|
||||
views.push_back(x1);
|
||||
views.push_back(x2);
|
||||
views.push_back(x3);
|
||||
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
StereoCamera cam1(pose1, K);
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
StereoCamera cam2(pose2, K);
|
||||
// create third camera 1 meter above the first camera
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
||||
StereoCamera cam3(pose3, K);
|
||||
|
||||
// three landmarks ~5 meters infront of camera
|
||||
Point3 landmark1(5, 0.5, 1.2);
|
||||
Point3 landmark2(5, -0.5, 1.2);
|
||||
Point3 landmark3(3, 0, 3.0);
|
||||
|
||||
// 1. Project three landmarks into three cameras and triangulate
|
||||
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark1);
|
||||
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark2);
|
||||
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark3);
|
||||
|
||||
// DELETE SOME MEASUREMENTS
|
||||
StereoPoint2 sp = measurements_cam1[1];
|
||||
measurements_cam1[1] = StereoPoint2(sp.uL(), missing_uR, sp.v());
|
||||
sp = measurements_cam2[2];
|
||||
measurements_cam2[2] = StereoPoint2(sp.uL(), missing_uR, sp.v());
|
||||
|
||||
SmartStereoProjectionParams params;
|
||||
params.setLinearizationMode(JACOBIAN_SVD);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor1( new SmartStereoProjectionFactorPP(model, params));
|
||||
smartFactor1->add(measurements_cam1, views, K);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, params));
|
||||
smartFactor2->add(measurements_cam2, views, K);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, params));
|
||||
smartFactor3->add(measurements_cam3, views, K);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, pose1, noisePrior);
|
||||
graph.addPrior(x2, pose2, noisePrior);
|
||||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, pose1);
|
||||
values.insert(x2, pose2);
|
||||
values.insert(x3, pose3 * noise_pose);
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
||||
result = optimizer.optimize();
|
||||
EXPECT(assert_equal(pose3, result.at<Pose3>(x3),1e-7));
|
||||
}
|
||||
|
||||
/* *************************************************************************
|
||||
TEST( SmartStereoProjectionFactorPP, landmarkDistance ) {
|
||||
|
@ -1278,151 +1056,6 @@ TEST( SmartStereoProjectionFactorPP, CheckHessian) {
|
|||
EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-8));
|
||||
}
|
||||
|
||||
/* *************************************************************************
|
||||
TEST( SmartStereoProjectionFactorPP, HessianWithRotation ) {
|
||||
KeyVector views;
|
||||
views.push_back(x1);
|
||||
views.push_back(x2);
|
||||
views.push_back(x3);
|
||||
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
StereoCamera cam1(pose1, K);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
StereoCamera cam2(pose2, K);
|
||||
|
||||
// create third camera 1 meter above the first camera
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
||||
StereoCamera cam3(pose3, K);
|
||||
|
||||
Point3 landmark1(5, 0.5, 1.2);
|
||||
|
||||
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark1);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactorInstance(new SmartStereoProjectionFactorPP(model));
|
||||
smartFactorInstance->add(measurements_cam1, views, K);
|
||||
|
||||
Values values;
|
||||
values.insert(x1, pose1);
|
||||
values.insert(x2, pose2);
|
||||
values.insert(x3, pose3);
|
||||
|
||||
boost::shared_ptr<GaussianFactor> hessianFactor =
|
||||
smartFactorInstance->linearize(values);
|
||||
// hessianFactor->print("Hessian factor \n");
|
||||
|
||||
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
|
||||
|
||||
Values rotValues;
|
||||
rotValues.insert(x1, poseDrift.compose(pose1));
|
||||
rotValues.insert(x2, poseDrift.compose(pose2));
|
||||
rotValues.insert(x3, poseDrift.compose(pose3));
|
||||
|
||||
boost::shared_ptr<GaussianFactor> hessianFactorRot =
|
||||
smartFactorInstance->linearize(rotValues);
|
||||
// hessianFactorRot->print("Hessian factor \n");
|
||||
|
||||
// Hessian is invariant to rotations in the nondegenerate case
|
||||
EXPECT(
|
||||
assert_equal(hessianFactor->information(),
|
||||
hessianFactorRot->information(), 1e-7));
|
||||
|
||||
Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
|
||||
Point3(10, -4, 5));
|
||||
|
||||
Values tranValues;
|
||||
tranValues.insert(x1, poseDrift2.compose(pose1));
|
||||
tranValues.insert(x2, poseDrift2.compose(pose2));
|
||||
tranValues.insert(x3, poseDrift2.compose(pose3));
|
||||
|
||||
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
|
||||
smartFactorInstance->linearize(tranValues);
|
||||
|
||||
// Hessian is invariant to rotations and translations in the nondegenerate case
|
||||
EXPECT(
|
||||
assert_equal(hessianFactor->information(),
|
||||
hessianFactorRotTran->information(), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************
|
||||
TEST( SmartStereoProjectionFactorPP, HessianWithRotationNonDegenerate ) {
|
||||
|
||||
KeyVector views;
|
||||
views.push_back(x1);
|
||||
views.push_back(x2);
|
||||
views.push_back(x3);
|
||||
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
StereoCamera cam1(pose1, K2);
|
||||
|
||||
// Second and third cameras in same place, which is a degenerate configuration
|
||||
Pose3 pose2 = pose1;
|
||||
Pose3 pose3 = pose1;
|
||||
StereoCamera cam2(pose2, K2);
|
||||
StereoCamera cam3(pose3, K2);
|
||||
|
||||
Point3 landmark1(5, 0.5, 1.2);
|
||||
|
||||
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark1);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor(new SmartStereoProjectionFactorPP(model));
|
||||
smartFactor->add(measurements_cam1, views, K2);
|
||||
|
||||
Values values;
|
||||
values.insert(x1, pose1);
|
||||
values.insert(x2, pose2);
|
||||
values.insert(x3, pose3);
|
||||
|
||||
boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(
|
||||
values);
|
||||
|
||||
// check that it is non degenerate
|
||||
EXPECT(smartFactor->isValid());
|
||||
|
||||
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
|
||||
|
||||
Values rotValues;
|
||||
rotValues.insert(x1, poseDrift.compose(pose1));
|
||||
rotValues.insert(x2, poseDrift.compose(pose2));
|
||||
rotValues.insert(x3, poseDrift.compose(pose3));
|
||||
|
||||
boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(
|
||||
rotValues);
|
||||
|
||||
// check that it is non degenerate
|
||||
EXPECT(smartFactor->isValid());
|
||||
|
||||
// Hessian is invariant to rotations in the nondegenerate case
|
||||
EXPECT(
|
||||
assert_equal(hessianFactor->information(),
|
||||
hessianFactorRot->information(), 1e-6));
|
||||
|
||||
Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
|
||||
Point3(10, -4, 5));
|
||||
|
||||
Values tranValues;
|
||||
tranValues.insert(x1, poseDrift2.compose(pose1));
|
||||
tranValues.insert(x2, poseDrift2.compose(pose2));
|
||||
tranValues.insert(x3, poseDrift2.compose(pose3));
|
||||
|
||||
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
|
||||
smartFactor->linearize(tranValues);
|
||||
|
||||
// Hessian is invariant to rotations and translations in the degenerate case
|
||||
EXPECT(
|
||||
assert_equal(hessianFactor->information(),
|
||||
#ifdef GTSAM_USE_EIGEN_MKL
|
||||
hessianFactorRotTran->information(), 1e-5));
|
||||
#else
|
||||
hessianFactorRotTran->information(), 1e-6));
|
||||
#endif
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
Loading…
Reference in New Issue