Removed VariableIndex from the class members as it was often left in an inconsistent state
parent
1e1dfdd808
commit
009012005e
|
@ -81,7 +81,7 @@ ConcurrentBatchFilter::Result ConcurrentBatchFilter::update(const NonlinearFacto
|
|||
// Optimize the factors using a modified version of L-M
|
||||
gttic(optimize);
|
||||
if(factors_.size() > 0) {
|
||||
result = optimize();
|
||||
result = optimize(factors_, theta_, ordering_, delta_, separatorValues_, parameters_);
|
||||
}
|
||||
gttoc(optimize);
|
||||
|
||||
|
@ -124,8 +124,23 @@ void ConcurrentBatchFilter::synchronize(const NonlinearFactorGraph& summarizedFa
|
|||
values.insert(smootherValues_);
|
||||
values.update(separatorValues); // ensure the smoother summarized factors are linearized around the values in the smoother
|
||||
|
||||
// Perform an optional optimization on the to-be-sent-to-the-smoother factors
|
||||
if(true) {
|
||||
// Create ordering and delta
|
||||
Ordering ordering = *graph.orderingCOLAMD(values);
|
||||
VectorValues delta = values.zeroVectors(ordering);
|
||||
// Optimize this graph using a modified version of L-M
|
||||
// TODO:
|
||||
optimize(graph, values, ordering, delta, separatorValues, parameters_);
|
||||
// Update filter theta and delta
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, theta_) {
|
||||
theta_.update(key_value.key, values.at(key_value.key));
|
||||
delta_.at(ordering_.at(key_value.key)) = delta.at(ordering.at(key_value.key));
|
||||
}
|
||||
// Update the fixed linearization points (since they just changed)
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
|
||||
separatorValues_.update(key_value.key, values.at(key_value.key));
|
||||
}
|
||||
}
|
||||
|
||||
// Create separate ordering constraints that force either the filter keys or the smoother keys to the front
|
||||
typedef std::map<Key, int> OrderingConstraints;
|
||||
|
@ -278,15 +293,15 @@ void ConcurrentBatchFilter::removeFactors(const std::vector<size_t>& slots) {
|
|||
/* ************************************************************************* */
|
||||
void ConcurrentBatchFilter::reorder(const boost::optional<FastList<Key> >& keysToMove) {
|
||||
|
||||
// Recalculate the variable index
|
||||
variableIndex_ = VariableIndex(*factors_.symbolic(ordering_));
|
||||
// Calculate the variable index
|
||||
VariableIndex variableIndex(*factors_.symbolic(ordering_), ordering_.size());
|
||||
|
||||
// COLAMD groups will be used to place marginalize keys in Group 0, and everything else in Group 1
|
||||
int group0 = 0;
|
||||
int group1 = keysToMove ? 1 : 0;
|
||||
int group1 = (keysToMove && (keysToMove->size() > 0) ) ? 1 : 0;
|
||||
|
||||
// Initialize all variables to group1
|
||||
std::vector<int> cmember(variableIndex_.size(), group1);
|
||||
std::vector<int> cmember(variableIndex.size(), group1);
|
||||
|
||||
// Set all of the keysToMove to Group0
|
||||
if(keysToMove && keysToMove->size() > 0) {
|
||||
|
@ -296,34 +311,35 @@ void ConcurrentBatchFilter::reorder(const boost::optional<FastList<Key> >& keysT
|
|||
}
|
||||
|
||||
// Generate the permutation
|
||||
Permutation forwardPermutation = *inference::PermutationCOLAMD_(variableIndex_, cmember);
|
||||
Permutation forwardPermutation = *inference::PermutationCOLAMD_(variableIndex, cmember);
|
||||
|
||||
// Permute the ordering, variable index, and deltas
|
||||
ordering_.permuteInPlace(forwardPermutation);
|
||||
variableIndex_.permuteInPlace(forwardPermutation);
|
||||
delta_.permuteInPlace(forwardPermutation);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
ConcurrentBatchFilter::Result ConcurrentBatchFilter::optimize() {
|
||||
ConcurrentBatchFilter::Result ConcurrentBatchFilter::optimize(const NonlinearFactorGraph& factors, Values& theta, const Ordering& ordering,
|
||||
VectorValues& delta, const Values& linearValues, const LevenbergMarquardtParams& parameters) {
|
||||
|
||||
// Create output result structure
|
||||
Result result;
|
||||
result.nonlinearVariables = theta_.size() - separatorValues_.size();
|
||||
result.linearVariables = separatorValues_.size();
|
||||
result.nonlinearVariables = theta.size() - linearValues.size();
|
||||
result.linearVariables = linearValues.size();
|
||||
|
||||
// Set optimization parameters
|
||||
double lambda = parameters_.lambdaInitial;
|
||||
double lambdaFactor = parameters_.lambdaFactor;
|
||||
double lambdaUpperBound = parameters_.lambdaUpperBound;
|
||||
double lambdaLowerBound = 0.5 / parameters_.lambdaUpperBound;
|
||||
size_t maxIterations = parameters_.maxIterations;
|
||||
double relativeErrorTol = parameters_.relativeErrorTol;
|
||||
double absoluteErrorTol = parameters_.absoluteErrorTol;
|
||||
double errorTol = parameters_.errorTol;
|
||||
double lambda = parameters.lambdaInitial;
|
||||
double lambdaFactor = parameters.lambdaFactor;
|
||||
double lambdaUpperBound = parameters.lambdaUpperBound;
|
||||
double lambdaLowerBound = 0.5 / parameters.lambdaUpperBound;
|
||||
size_t maxIterations = parameters.maxIterations;
|
||||
double relativeErrorTol = parameters.relativeErrorTol;
|
||||
double absoluteErrorTol = parameters.absoluteErrorTol;
|
||||
double errorTol = parameters.errorTol;
|
||||
|
||||
// Create a Values that holds the current evaluation point
|
||||
Values evalpoint = theta_.retract(delta_, ordering_);
|
||||
result.error = factors_.error(evalpoint);
|
||||
Values evalpoint = theta.retract(delta, ordering);
|
||||
result.error = factors.error(evalpoint);
|
||||
|
||||
// Use a custom optimization loop so the linearization points can be controlled
|
||||
double previousError;
|
||||
|
@ -335,20 +351,20 @@ ConcurrentBatchFilter::Result ConcurrentBatchFilter::optimize() {
|
|||
gttic(optimizer_iteration);
|
||||
{
|
||||
// Linearize graph around the linearization point
|
||||
GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_);
|
||||
GaussianFactorGraph linearFactorGraph = *factors.linearize(theta, ordering);
|
||||
|
||||
// Keep increasing lambda until we make make progress
|
||||
while(true) {
|
||||
// Add prior factors at the current solution
|
||||
gttic(damp);
|
||||
GaussianFactorGraph dampedFactorGraph(linearFactorGraph);
|
||||
dampedFactorGraph.reserve(linearFactorGraph.size() + delta_.size());
|
||||
dampedFactorGraph.reserve(linearFactorGraph.size() + delta.size());
|
||||
{
|
||||
// for each of the variables, add a prior at the current solution
|
||||
for(size_t j=0; j<delta_.size(); ++j) {
|
||||
Matrix A = lambda * eye(delta_[j].size());
|
||||
Vector b = lambda * delta_[j];
|
||||
SharedDiagonal model = noiseModel::Unit::Create(delta_[j].size());
|
||||
for(size_t j=0; j<delta.size(); ++j) {
|
||||
Matrix A = lambda * eye(delta[j].size());
|
||||
Vector b = lambda * delta[j];
|
||||
SharedDiagonal model = noiseModel::Unit::Create(delta[j].size());
|
||||
GaussianFactor::shared_ptr prior(new JacobianFactor(j, A, b, model));
|
||||
dampedFactorGraph.push_back(prior);
|
||||
}
|
||||
|
@ -358,14 +374,14 @@ ConcurrentBatchFilter::Result ConcurrentBatchFilter::optimize() {
|
|||
|
||||
gttic(solve);
|
||||
// Solve Damped Gaussian Factor Graph
|
||||
newDelta = GaussianJunctionTree(dampedFactorGraph).optimize(parameters_.getEliminationFunction());
|
||||
newDelta = GaussianJunctionTree(dampedFactorGraph).optimize(parameters.getEliminationFunction());
|
||||
// update the evalpoint with the new delta
|
||||
evalpoint = theta_.retract(newDelta, ordering_);
|
||||
evalpoint = theta.retract(newDelta, ordering);
|
||||
gttoc(solve);
|
||||
|
||||
// Evaluate the new error
|
||||
// Evaluate the new nonlinear error
|
||||
gttic(compute_error);
|
||||
double error = factors_.error(evalpoint);
|
||||
double error = factors.error(evalpoint);
|
||||
gttoc(compute_error);
|
||||
|
||||
if(error < result.error) {
|
||||
|
@ -373,15 +389,15 @@ ConcurrentBatchFilter::Result ConcurrentBatchFilter::optimize() {
|
|||
// Update the error value
|
||||
result.error = error;
|
||||
// Update the linearization point
|
||||
theta_ = evalpoint;
|
||||
theta = evalpoint;
|
||||
// Reset the deltas to zeros
|
||||
delta_.setZero();
|
||||
delta.setZero();
|
||||
// Put the linearization points and deltas back for specific variables
|
||||
if(separatorValues_.size() > 0) {
|
||||
theta_.update(separatorValues_);
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
|
||||
Index index = ordering_.at(key_value.key);
|
||||
delta_.at(index) = newDelta.at(index);
|
||||
if(linearValues.size() > 0) {
|
||||
theta.update(linearValues);
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, linearValues) {
|
||||
Index index = ordering.at(key_value.key);
|
||||
delta.at(index) = newDelta.at(index);
|
||||
}
|
||||
}
|
||||
// Decrease lambda for next time
|
||||
|
@ -420,23 +436,25 @@ void ConcurrentBatchFilter::marginalize(const FastList<Key>& keysToMove) {
|
|||
// from the result of a partial elimination. This function removes the marginalized factors and
|
||||
// adds the linearized factors back in.
|
||||
|
||||
std::set<size_t> removedFactorSlots;
|
||||
std::vector<size_t> marginalSlots;
|
||||
|
||||
// Calculate marginal factors on the remaining variables (after marginalizing 'keyToMove')
|
||||
// Note: It is assumed the ordering already has these keys first
|
||||
{
|
||||
// Use the variable Index to mark the factors that will be marginalized
|
||||
BOOST_FOREACH(Key key, keysToMove) {
|
||||
const FastList<size_t>& slots = variableIndex_[ordering_.at(key)];
|
||||
removedFactorSlots.insert(slots.begin(), slots.end());
|
||||
}
|
||||
|
||||
// Create the linear factor graph
|
||||
GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_);
|
||||
|
||||
// Calculate the variable index
|
||||
VariableIndex variableIndex(linearFactorGraph, ordering_.size());
|
||||
|
||||
// Use the variable Index to mark the factors that will be marginalized
|
||||
std::set<size_t> removedFactorSlots;
|
||||
BOOST_FOREACH(Key key, keysToMove) {
|
||||
const FastList<size_t>& slots = variableIndex[ordering_.at(key)];
|
||||
removedFactorSlots.insert(slots.begin(), slots.end());
|
||||
}
|
||||
|
||||
// Construct an elimination tree to perform sparse elimination
|
||||
std::vector<EliminationForest::shared_ptr> forest( EliminationForest::Create(linearFactorGraph, variableIndex_) );
|
||||
std::vector<EliminationForest::shared_ptr> forest( EliminationForest::Create(linearFactorGraph, variableIndex) );
|
||||
|
||||
// This is a tree. Only the top-most nodes/indices need to be eliminated; all of the children will be eliminated automatically
|
||||
// Find the subset of nodes/keys that must be eliminated
|
||||
|
@ -465,8 +483,8 @@ void ConcurrentBatchFilter::marginalize(const FastList<Key>& keysToMove) {
|
|||
}
|
||||
}
|
||||
}
|
||||
marginalSlots = insertFactors(marginalFactors);
|
||||
}
|
||||
std::vector<size_t> marginalSlots = insertFactors(marginalFactors);
|
||||
|
||||
|
||||
// Cache marginalized variables and factors for later transmission to the smoother
|
||||
{
|
||||
|
@ -535,7 +553,7 @@ NonlinearFactorGraph ConcurrentBatchFilter::marginalize(const NonlinearFactorGra
|
|||
GaussianFactorGraph linearFactorGraph = *graph.linearize(values, ordering);
|
||||
|
||||
// Construct a variable index
|
||||
VariableIndex variableIndex(linearFactorGraph);
|
||||
VariableIndex variableIndex(linearFactorGraph, ordering.size());
|
||||
|
||||
// Construct an elimination tree to perform sparse elimination
|
||||
std::vector<EliminationForest::shared_ptr> forest( EliminationForest::Create(linearFactorGraph, variableIndex) );
|
||||
|
|
|
@ -126,7 +126,6 @@ protected:
|
|||
Values theta_; ///< Current linearization point of all variables in the filter
|
||||
Ordering ordering_; ///< The current ordering used to calculate the linear deltas
|
||||
VectorValues delta_; ///< The current set of linear deltas from the linearization point
|
||||
VariableIndex variableIndex_; ///< The current variable index, which allows efficient factor lookup by variable. Note: after marginalization, this is left in an inconsistent state
|
||||
std::queue<size_t> availableSlots_; ///< The set of available factor graph slots caused by deleting factors
|
||||
Values separatorValues_; ///< The linearization points of the separator variables. These should not be updated during optimization.
|
||||
std::vector<size_t> smootherSummarizationSlots_; ///< The slots in factor graph that correspond to the current smoother summarization factors
|
||||
|
@ -194,7 +193,8 @@ private:
|
|||
void reorder(const boost::optional<FastList<Key> >& keysToMove = boost::none);
|
||||
|
||||
/** Use a modified version of L-M to update the linearization point and delta */
|
||||
Result optimize();
|
||||
static Result optimize(const NonlinearFactorGraph& factors, Values& theta, const Ordering& ordering,
|
||||
VectorValues& delta, const Values& linearValues, const LevenbergMarquardtParams& parameters);
|
||||
|
||||
/** Marginalize out the set of requested variables from the filter, caching them for the smoother
|
||||
* This effectively moves the separator.
|
||||
|
|
Loading…
Reference in New Issue