Abbreviate methods
parent
6b96ae217f
commit
005efb3f07
|
@ -32,7 +32,7 @@ from gtsam import (
|
||||||
K = gtsam.symbol_shorthand.K
|
K = gtsam.symbol_shorthand.K
|
||||||
|
|
||||||
# Methods to compare
|
# Methods to compare
|
||||||
methods = ["FundamentalMatrix", "SimpleFundamentalMatrix", "EssentialMatrix", "CalibratedEssentialMatrix"]
|
methods = ["Fundamental", "SimpleF", "Essential+Ks", "Calibrated"]
|
||||||
|
|
||||||
|
|
||||||
# Formatter function for printing keys
|
# Formatter function for printing keys
|
||||||
|
@ -82,15 +82,15 @@ def compute_ground_truth(method, poses, cal):
|
||||||
E2 = EssentialMatrix.FromPose3(poses[0].between(poses[2]))
|
E2 = EssentialMatrix.FromPose3(poses[0].between(poses[2]))
|
||||||
F1 = FundamentalMatrix(cal.K(), E1, cal.K())
|
F1 = FundamentalMatrix(cal.K(), E1, cal.K())
|
||||||
F2 = FundamentalMatrix(cal.K(), E2, cal.K())
|
F2 = FundamentalMatrix(cal.K(), E2, cal.K())
|
||||||
if method == "FundamentalMatrix":
|
if method == "Fundamental":
|
||||||
return F1, F2
|
return F1, F2
|
||||||
elif method == "SimpleFundamentalMatrix":
|
elif method == "SimpleF":
|
||||||
f = cal.fx()
|
f = cal.fx()
|
||||||
c = cal.principalPoint()
|
c = cal.principalPoint()
|
||||||
SF1 = SimpleFundamentalMatrix(E1, f, f, c, c)
|
SF1 = SimpleFundamentalMatrix(E1, f, f, c, c)
|
||||||
SF2 = SimpleFundamentalMatrix(E2, f, f, c, c)
|
SF2 = SimpleFundamentalMatrix(E2, f, f, c, c)
|
||||||
return SF1, SF2
|
return SF1, SF2
|
||||||
elif method == "EssentialMatrix" or method == "CalibratedEssentialMatrix":
|
elif method == "Essential+Ks" or method == "Calibrated":
|
||||||
return E1, E2
|
return E1, E2
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown method {method}")
|
raise ValueError(f"Unknown method {method}")
|
||||||
|
@ -100,23 +100,23 @@ def build_factor_graph(method, num_cameras, measurements, cal):
|
||||||
"""build the factor graph"""
|
"""build the factor graph"""
|
||||||
graph = NonlinearFactorGraph()
|
graph = NonlinearFactorGraph()
|
||||||
|
|
||||||
if method == "FundamentalMatrix":
|
if method == "Fundamental":
|
||||||
FactorClass = gtsam.TransferFactorFundamentalMatrix
|
FactorClass = gtsam.TransferFactorFundamentalMatrix
|
||||||
elif method == "SimpleFundamentalMatrix":
|
elif method == "SimpleF":
|
||||||
FactorClass = gtsam.TransferFactorSimpleFundamentalMatrix
|
FactorClass = gtsam.TransferFactorSimpleFundamentalMatrix
|
||||||
elif method == "EssentialMatrix":
|
elif method == "Essential+Ks":
|
||||||
FactorClass = gtsam.EssentialTransferFactorCal3f
|
FactorClass = gtsam.EssentialTransferFactorCal3f
|
||||||
# add priors on all calibrations:
|
# add priors on all calibrations:
|
||||||
for i in range(num_cameras):
|
for i in range(num_cameras):
|
||||||
model = gtsam.noiseModel.Isotropic.Sigma(1, 10.0)
|
model = gtsam.noiseModel.Isotropic.Sigma(1, 10.0)
|
||||||
graph.addPriorCal3f(K(i), cal, model)
|
graph.addPriorCal3f(K(i), cal, model)
|
||||||
elif method == "CalibratedEssentialMatrix":
|
elif method == "Calibrated":
|
||||||
FactorClass = gtsam.TransferFactorEssentialMatrix
|
FactorClass = gtsam.TransferFactorEssentialMatrix
|
||||||
# No priors on calibration needed
|
# No priors on calibration needed
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown method {method}")
|
raise ValueError(f"Unknown method {method}")
|
||||||
|
|
||||||
if method == "CalibratedEssentialMatrix":
|
if method == "Calibrated":
|
||||||
# Calibrate measurements using ground truth calibration
|
# Calibrate measurements using ground truth calibration
|
||||||
z = [[cal.calibrate(m) for m in cam_measurements] for cam_measurements in measurements]
|
z = [[cal.calibrate(m) for m in cam_measurements] for cam_measurements in measurements]
|
||||||
else:
|
else:
|
||||||
|
@ -150,7 +150,7 @@ def get_initial_estimate(method, num_cameras, ground_truth, cal):
|
||||||
initialEstimate = Values()
|
initialEstimate = Values()
|
||||||
total_dimension = 0
|
total_dimension = 0
|
||||||
|
|
||||||
if method in ["FundamentalMatrix", "SimpleFundamentalMatrix"]:
|
if method in ["Fundamental", "SimpleF"]:
|
||||||
F1, F2 = ground_truth
|
F1, F2 = ground_truth
|
||||||
for a in range(num_cameras):
|
for a in range(num_cameras):
|
||||||
b = (a + 1) % num_cameras # Next camera
|
b = (a + 1) % num_cameras # Next camera
|
||||||
|
@ -158,7 +158,7 @@ def get_initial_estimate(method, num_cameras, ground_truth, cal):
|
||||||
initialEstimate.insert(EdgeKey(a, b).key(), F1)
|
initialEstimate.insert(EdgeKey(a, b).key(), F1)
|
||||||
initialEstimate.insert(EdgeKey(a, c).key(), F2)
|
initialEstimate.insert(EdgeKey(a, c).key(), F2)
|
||||||
total_dimension += F1.dim() + F2.dim()
|
total_dimension += F1.dim() + F2.dim()
|
||||||
elif method in ["EssentialMatrix", "CalibratedEssentialMatrix"]:
|
elif method in ["Essential+Ks", "Calibrated"]:
|
||||||
E1, E2 = ground_truth
|
E1, E2 = ground_truth
|
||||||
for a in range(num_cameras):
|
for a in range(num_cameras):
|
||||||
b = (a + 1) % num_cameras # Next camera
|
b = (a + 1) % num_cameras # Next camera
|
||||||
|
@ -169,7 +169,7 @@ def get_initial_estimate(method, num_cameras, ground_truth, cal):
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown method {method}")
|
raise ValueError(f"Unknown method {method}")
|
||||||
|
|
||||||
if method == "EssentialMatrix":
|
if method == "Essential+Ks":
|
||||||
# Insert initial calibrations
|
# Insert initial calibrations
|
||||||
for i in range(num_cameras):
|
for i in range(num_cameras):
|
||||||
initialEstimate.insert(K(i), cal)
|
initialEstimate.insert(K(i), cal)
|
||||||
|
@ -196,7 +196,7 @@ def compute_distances(method, result, ground_truth, num_cameras, cal):
|
||||||
"""Compute geodesic distances from ground truth"""
|
"""Compute geodesic distances from ground truth"""
|
||||||
distances = []
|
distances = []
|
||||||
|
|
||||||
F1, F2 = ground_truth["FundamentalMatrix"]
|
F1, F2 = ground_truth["Fundamental"]
|
||||||
|
|
||||||
for a in range(num_cameras):
|
for a in range(num_cameras):
|
||||||
b = (a + 1) % num_cameras
|
b = (a + 1) % num_cameras
|
||||||
|
@ -204,20 +204,20 @@ def compute_distances(method, result, ground_truth, num_cameras, cal):
|
||||||
key_ab = EdgeKey(a, b).key()
|
key_ab = EdgeKey(a, b).key()
|
||||||
key_ac = EdgeKey(a, c).key()
|
key_ac = EdgeKey(a, c).key()
|
||||||
|
|
||||||
if method in ["EssentialMatrix", "CalibratedEssentialMatrix"]:
|
if method in ["Essential+Ks", "Calibrated"]:
|
||||||
E_est_ab = result.atEssentialMatrix(key_ab)
|
E_est_ab = result.atEssentialMatrix(key_ab)
|
||||||
E_est_ac = result.atEssentialMatrix(key_ac)
|
E_est_ac = result.atEssentialMatrix(key_ac)
|
||||||
|
|
||||||
# Compute estimated FundamentalMatrices
|
# Compute estimated FundamentalMatrices
|
||||||
if method == "FundamentalMatrix":
|
if method == "Fundamental":
|
||||||
F_est_ab = result.atFundamentalMatrix(key_ab)
|
F_est_ab = result.atFundamentalMatrix(key_ab)
|
||||||
F_est_ac = result.atFundamentalMatrix(key_ac)
|
F_est_ac = result.atFundamentalMatrix(key_ac)
|
||||||
elif method == "SimpleFundamentalMatrix":
|
elif method == "SimpleF":
|
||||||
SF_est_ab = result.atSimpleFundamentalMatrix(key_ab).matrix()
|
SF_est_ab = result.atSimpleFundamentalMatrix(key_ab).matrix()
|
||||||
SF_est_ac = result.atSimpleFundamentalMatrix(key_ac).matrix()
|
SF_est_ac = result.atSimpleFundamentalMatrix(key_ac).matrix()
|
||||||
F_est_ab = FundamentalMatrix(SF_est_ab)
|
F_est_ab = FundamentalMatrix(SF_est_ab)
|
||||||
F_est_ac = FundamentalMatrix(SF_est_ac)
|
F_est_ac = FundamentalMatrix(SF_est_ac)
|
||||||
elif method == "EssentialMatrix":
|
elif method == "Essential+Ks":
|
||||||
# Retrieve calibrations from result:
|
# Retrieve calibrations from result:
|
||||||
cal_a = result.atCal3f(K(a))
|
cal_a = result.atCal3f(K(a))
|
||||||
cal_b = result.atCal3f(K(b))
|
cal_b = result.atCal3f(K(b))
|
||||||
|
@ -226,7 +226,7 @@ def compute_distances(method, result, ground_truth, num_cameras, cal):
|
||||||
# Convert estimated EssentialMatrices to FundamentalMatrices
|
# Convert estimated EssentialMatrices to FundamentalMatrices
|
||||||
F_est_ab = FundamentalMatrix(cal_a.K(), E_est_ab, cal_b.K())
|
F_est_ab = FundamentalMatrix(cal_a.K(), E_est_ab, cal_b.K())
|
||||||
F_est_ac = FundamentalMatrix(cal_a.K(), E_est_ac, cal_c.K())
|
F_est_ac = FundamentalMatrix(cal_a.K(), E_est_ac, cal_c.K())
|
||||||
elif method == "CalibratedEssentialMatrix":
|
elif method == "Calibrated":
|
||||||
# Use ground truth calibration
|
# Use ground truth calibration
|
||||||
F_est_ab = FundamentalMatrix(cal.K(), E_est_ab, cal.K())
|
F_est_ab = FundamentalMatrix(cal.K(), E_est_ab, cal.K())
|
||||||
F_est_ac = FundamentalMatrix(cal.K(), E_est_ac, cal.K())
|
F_est_ac = FundamentalMatrix(cal.K(), E_est_ac, cal.K())
|
||||||
|
@ -322,7 +322,7 @@ def main():
|
||||||
# Assert that the initial error is the same for all methods:
|
# Assert that the initial error is the same for all methods:
|
||||||
if method == methods[0]:
|
if method == methods[0]:
|
||||||
error0 = graph.error(initial_estimate[method])
|
error0 = graph.error(initial_estimate[method])
|
||||||
elif method == "CalibratedEssentialMatrix":
|
elif method == "Calibrated":
|
||||||
current_error = graph.error(initial_estimate[method]) * cal.f() * cal.f()
|
current_error = graph.error(initial_estimate[method]) * cal.f() * cal.f()
|
||||||
print(error0, current_error)
|
print(error0, current_error)
|
||||||
assert np.allclose(error0, current_error), "Initial errors do not match among methods."
|
assert np.allclose(error0, current_error), "Initial errors do not match among methods."
|
||||||
|
@ -338,7 +338,7 @@ def main():
|
||||||
|
|
||||||
# Compute final error
|
# Compute final error
|
||||||
final_error = graph.error(result)
|
final_error = graph.error(result)
|
||||||
if method == "CalibratedEssentialMatrix":
|
if method == "Calibrated":
|
||||||
final_error *= cal.f() * cal.f()
|
final_error *= cal.f() * cal.f()
|
||||||
|
|
||||||
# Store results
|
# Store results
|
||||||
|
|
Loading…
Reference in New Issue