setting up .h and tests - compiles and tests pass.
parent
cd1d4b4df5
commit
00387b32cd
|
@ -10,116 +10,95 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SmartProjectionProjectionPoseFactorRollingShutter.h
|
||||
* @brief Smart projection factor on poses and extrinsic calibration
|
||||
* @file SmartProjectionPoseFactorRollingShutter.h
|
||||
* @brief Smart projection factor on poses modeling rolling shutter effect
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <gtsam_unstable/slam/SmartStereoProjectionFactorPP.h>
|
||||
//#include <gtsam_unstable/slam/SmartProjectionPoseFactorRollingShutter.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
SmartStereoProjectionFactorPP::SmartStereoProjectionFactorPP(
|
||||
const SharedNoiseModel& sharedNoiseModel,
|
||||
const SmartStereoProjectionParams& params)
|
||||
: Base(sharedNoiseModel, params) {} // note: no extrinsic specified!
|
||||
|
||||
void SmartStereoProjectionFactorPP::add(
|
||||
const StereoPoint2& measured,
|
||||
const Key& w_P_body_key, const Key& body_P_cam_key,
|
||||
const boost::shared_ptr<Cal3_S2Stereo>& K) {
|
||||
// we index by cameras..
|
||||
Base::add(measured, w_P_body_key);
|
||||
// but we also store the extrinsic calibration keys in the same order
|
||||
world_P_body_keys_.push_back(w_P_body_key);
|
||||
body_P_cam_keys_.push_back(body_P_cam_key);
|
||||
|
||||
// pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
|
||||
if(std::find(keys_.begin(), keys_.end(), body_P_cam_key) == keys_.end())
|
||||
keys_.push_back(body_P_cam_key); // add only unique keys
|
||||
|
||||
K_all_.push_back(K);
|
||||
}
|
||||
|
||||
void SmartStereoProjectionFactorPP::add(
|
||||
const std::vector<StereoPoint2>& measurements,
|
||||
const KeyVector& world_P_body_keys, const KeyVector& body_P_cam_keys,
|
||||
const std::vector<boost::shared_ptr<Cal3_S2Stereo>>& Ks) {
|
||||
assert(world_P_body_keys.size() == measurements.size());
|
||||
assert(world_P_body_keys.size() == body_P_cam_keys.size());
|
||||
assert(world_P_body_keys.size() == Ks.size());
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
Base::add(measurements[i], world_P_body_keys[i]);
|
||||
// pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
|
||||
if(std::find(keys_.begin(), keys_.end(), body_P_cam_keys[i]) == keys_.end())
|
||||
keys_.push_back(body_P_cam_keys[i]); // add only unique keys
|
||||
|
||||
world_P_body_keys_.push_back(world_P_body_keys[i]);
|
||||
body_P_cam_keys_.push_back(body_P_cam_keys[i]);
|
||||
|
||||
K_all_.push_back(Ks[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void SmartStereoProjectionFactorPP::add(
|
||||
const std::vector<StereoPoint2>& measurements,
|
||||
const KeyVector& world_P_body_keys, const KeyVector& body_P_cam_keys,
|
||||
const boost::shared_ptr<Cal3_S2Stereo>& K) {
|
||||
assert(world_P_body_keys.size() == measurements.size());
|
||||
assert(world_P_body_keys.size() == body_P_cam_keys.size());
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
Base::add(measurements[i], world_P_body_keys[i]);
|
||||
// pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
|
||||
if(std::find(keys_.begin(), keys_.end(), body_P_cam_keys[i]) == keys_.end())
|
||||
keys_.push_back(body_P_cam_keys[i]); // add only unique keys
|
||||
|
||||
world_P_body_keys_.push_back(world_P_body_keys[i]);
|
||||
body_P_cam_keys_.push_back(body_P_cam_keys[i]);
|
||||
|
||||
K_all_.push_back(K);
|
||||
}
|
||||
}
|
||||
|
||||
void SmartStereoProjectionFactorPP::print(
|
||||
const std::string& s, const KeyFormatter& keyFormatter) const {
|
||||
std::cout << s << "SmartStereoProjectionFactorPP: \n ";
|
||||
for (size_t i = 0; i < K_all_.size(); i++) {
|
||||
K_all_[i]->print("calibration = ");
|
||||
std::cout << " extrinsic pose key: " << keyFormatter(body_P_cam_keys_[i]) << std::endl;
|
||||
}
|
||||
Base::print("", keyFormatter);
|
||||
}
|
||||
|
||||
bool SmartStereoProjectionFactorPP::equals(const NonlinearFactor& p,
|
||||
double tol) const {
|
||||
const SmartStereoProjectionFactorPP* e =
|
||||
dynamic_cast<const SmartStereoProjectionFactorPP*>(&p);
|
||||
|
||||
return e && Base::equals(p, tol) &&
|
||||
body_P_cam_keys_ == e->getExtrinsicPoseKeys();
|
||||
}
|
||||
|
||||
double SmartStereoProjectionFactorPP::error(const Values& values) const {
|
||||
if (this->active(values)) {
|
||||
return this->totalReprojectionError(cameras(values));
|
||||
} else { // else of active flag
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
SmartStereoProjectionFactorPP::Base::Cameras
|
||||
SmartStereoProjectionFactorPP::cameras(const Values& values) const {
|
||||
assert(world_P_body_keys_.size() == K_all_.size());
|
||||
assert(world_P_body_keys_.size() == body_P_cam_keys_.size());
|
||||
Base::Cameras cameras;
|
||||
for (size_t i = 0; i < world_P_body_keys_.size(); i++) {
|
||||
Pose3 w_P_body = values.at<Pose3>(world_P_body_keys_[i]);
|
||||
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_[i]);
|
||||
Pose3 w_P_cam = w_P_body.compose(body_P_cam);
|
||||
cameras.push_back(StereoCamera(w_P_cam, K_all_[i]));
|
||||
}
|
||||
return cameras;
|
||||
}
|
||||
//
|
||||
//void SmartProjectionPoseFactorRollingShutter::add(
|
||||
// const std::vector<StereoPoint2>& measurements,
|
||||
// const KeyVector& world_P_body_keys, const KeyVector& body_P_cam_keys,
|
||||
// const std::vector<boost::shared_ptr<Cal3_S2Stereo>>& Ks) {
|
||||
// assert(world_P_body_keys.size() == measurements.size());
|
||||
// assert(world_P_body_keys.size() == body_P_cam_keys.size());
|
||||
// assert(world_P_body_keys.size() == Ks.size());
|
||||
// for (size_t i = 0; i < measurements.size(); i++) {
|
||||
// Base::add(measurements[i], world_P_body_keys[i]);
|
||||
// // pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
|
||||
// if(std::find(keys_.begin(), keys_.end(), body_P_cam_keys[i]) == keys_.end())
|
||||
// keys_.push_back(body_P_cam_keys[i]); // add only unique keys
|
||||
//
|
||||
// world_P_body_keys_.push_back(world_P_body_keys[i]);
|
||||
// body_P_cam_keys_.push_back(body_P_cam_keys[i]);
|
||||
//
|
||||
// K_all_.push_back(Ks[i]);
|
||||
// }
|
||||
//}
|
||||
//
|
||||
//void SmartProjectionPoseFactorRollingShutter::add(
|
||||
// const std::vector<StereoPoint2>& measurements,
|
||||
// const KeyVector& world_P_body_keys, const KeyVector& body_P_cam_keys,
|
||||
// const boost::shared_ptr<Cal3_S2Stereo>& K) {
|
||||
// assert(world_P_body_keys.size() == measurements.size());
|
||||
// assert(world_P_body_keys.size() == body_P_cam_keys.size());
|
||||
// for (size_t i = 0; i < measurements.size(); i++) {
|
||||
// Base::add(measurements[i], world_P_body_keys[i]);
|
||||
// // pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
|
||||
// if(std::find(keys_.begin(), keys_.end(), body_P_cam_keys[i]) == keys_.end())
|
||||
// keys_.push_back(body_P_cam_keys[i]); // add only unique keys
|
||||
//
|
||||
// world_P_body_keys_.push_back(world_P_body_keys[i]);
|
||||
// body_P_cam_keys_.push_back(body_P_cam_keys[i]);
|
||||
//
|
||||
// K_all_.push_back(K);
|
||||
// }
|
||||
//}
|
||||
//
|
||||
//void SmartProjectionPoseFactorRollingShutter::print(
|
||||
// const std::string& s, const KeyFormatter& keyFormatter) const {
|
||||
// std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n ";
|
||||
// for (size_t i = 0; i < K_all_.size(); i++) {
|
||||
// K_all_[i]->print("calibration = ");
|
||||
// std::cout << " extrinsic pose key: " << keyFormatter(body_P_cam_keys_[i]) << std::endl;
|
||||
// }
|
||||
// Base::print("", keyFormatter);
|
||||
//}
|
||||
//
|
||||
//bool SmartProjectionPoseFactorRollingShutter::equals(const NonlinearFactor& p,
|
||||
// double tol) const {
|
||||
// const SmartProjectionPoseFactorRollingShutter* e =
|
||||
// dynamic_cast<const SmartProjectionPoseFactorRollingShutter*>(&p);
|
||||
//
|
||||
// return e && Base::equals(p, tol) &&
|
||||
// body_P_cam_keys_ == e->getExtrinsicPoseKeys();
|
||||
//}
|
||||
//
|
||||
//double SmartProjectionPoseFactorRollingShutter::error(const Values& values) const {
|
||||
// if (this->active(values)) {
|
||||
// return this->totalReprojectionError(cameras(values));
|
||||
// } else { // else of active flag
|
||||
// return 0.0;
|
||||
// }
|
||||
//}
|
||||
//
|
||||
//SmartProjectionPoseFactorRollingShutter::Base::Cameras
|
||||
//SmartProjectionPoseFactorRollingShutter::cameras(const Values& values) const {
|
||||
// assert(world_P_body_keys_.size() == K_all_.size());
|
||||
// assert(world_P_body_keys_.size() == body_P_cam_keys_.size());
|
||||
// Base::Cameras cameras;
|
||||
// for (size_t i = 0; i < world_P_body_keys_.size(); i++) {
|
||||
// Pose3 w_P_body = values.at<Pose3>(world_P_body_keys_[i]);
|
||||
// Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_[i]);
|
||||
// Pose3 w_P_cam = w_P_body.compose(body_P_cam);
|
||||
// cameras.push_back(StereoCamera(w_P_cam, K_all_[i]));
|
||||
// }
|
||||
// return cameras;
|
||||
//}
|
||||
|
||||
} // \ namespace gtsam
|
||||
|
|
|
@ -10,15 +10,14 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SmartStereoProjectionFactorPP.h
|
||||
* @brief Smart stereo factor on poses (P) and camera extrinsic pose (P) calibrations
|
||||
* @file SmartProjectionPoseFactorRollingShutter.h
|
||||
* @brief Smart projection factor on poses modeling rolling shutter effect with given readout time
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam_unstable/slam/SmartStereoProjectionFactor.h>
|
||||
#include <gtsam/slam/SmartProjectionFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
/**
|
||||
|
@ -33,37 +32,40 @@ namespace gtsam {
|
|||
*/
|
||||
|
||||
/**
|
||||
* This factor optimizes the pose of the body as well as the extrinsic camera calibration (pose of camera wrt body).
|
||||
* Each camera may have its own extrinsic calibration or the same calibration can be shared by multiple cameras.
|
||||
* This factor requires that values contain the involved poses and extrinsics (both are Pose3 variables).
|
||||
* This factor optimizes the pose of the body assuming a rolling shutter model of the camera with given readout time.
|
||||
* This factor requires that values contain (for each pixel observation) consecutive camera poses
|
||||
* from which the pixel observation pose can be interpolated.
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
||||
template<class CALIBRATION>
|
||||
class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor<
|
||||
PinholePose<CALIBRATION> > {
|
||||
|
||||
protected:
|
||||
/// shared pointer to calibration object (one for each camera)
|
||||
std::vector<boost::shared_ptr<Cal3_S2Stereo>> K_all_;
|
||||
/// shared pointer to calibration object (one for each observation)
|
||||
std::vector<boost::shared_ptr<CALIBRATION> > K_all_;
|
||||
|
||||
/// The keys corresponding to the pose of the body (with respect to an external world frame) for each view
|
||||
KeyVector world_P_body_keys_;
|
||||
// The keys of the pose of the body (with respect to an external world frame): two consecutive poses for each observation
|
||||
std::vector<std::pair<Key,Key>> world_P_body_key_pairs_;
|
||||
|
||||
/// The keys corresponding to the extrinsic pose calibration for each view (pose that transform from camera to body)
|
||||
KeyVector body_P_cam_keys_;
|
||||
// interpolation factor (one for each observation) to interpolate between pair of consecutive poses
|
||||
std::vector<double> gammas_;
|
||||
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
typedef PinholePose<CALIBRATION> Camera;
|
||||
/// shorthand for base class type
|
||||
typedef SmartStereoProjectionFactor Base;
|
||||
typedef SmartProjectionFactor<Camera> Base;
|
||||
|
||||
/// shorthand for this class
|
||||
typedef SmartStereoProjectionFactorPP This;
|
||||
typedef SmartProjectionPoseFactorRollingShutter This;
|
||||
|
||||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
static const int Dim = 12; ///< Camera dimension: 6 for body pose, 6 for extrinsic pose
|
||||
static const int DimPose = 6; ///< Pose3 dimension
|
||||
static const int ZDim = 3; ///< Measurement dimension (for a StereoPoint2 measurement)
|
||||
static const int Dim = 6; ///< Pose3 dimension
|
||||
static const int ZDim = 2; ///< Measurement dimension (Point2)
|
||||
typedef Eigen::Matrix<double, ZDim, Dim> MatrixZD; // F blocks (derivatives wrt camera)
|
||||
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks; // vector of F blocks
|
||||
|
||||
|
@ -72,51 +74,67 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
* @param Isotropic measurement noise
|
||||
* @param params internal parameters of the smart factors
|
||||
*/
|
||||
SmartStereoProjectionFactorPP(const SharedNoiseModel& sharedNoiseModel,
|
||||
const SmartStereoProjectionParams& params =
|
||||
SmartStereoProjectionParams());
|
||||
SmartProjectionPoseFactorRollingShutter(
|
||||
const SharedNoiseModel& sharedNoiseModel,
|
||||
const SmartProjectionParams& params = SmartProjectionParams())
|
||||
: Base(sharedNoiseModel, params) {}
|
||||
|
||||
/** Virtual destructor */
|
||||
~SmartStereoProjectionFactorPP() override = default;
|
||||
~SmartProjectionPoseFactorRollingShutter() override = default;
|
||||
|
||||
/**
|
||||
* add a new measurement, with a pose key, and an extrinsic pose key
|
||||
* @param measured is the 3-dimensional location of the projection of a
|
||||
* single landmark in the a single (stereo) view (the measurement)
|
||||
* @param world_P_body_key is the key corresponding to the body poses observing the same landmark
|
||||
* @param body_P_cam_key is the key corresponding to the extrinsic camera-to-body pose calibration
|
||||
* add a new measurement, with 2 pose keys, camera calibration, and observed pixel.
|
||||
* @param measured is the 2-dimensional location of the projection of a
|
||||
* single landmark in the a single view (the measurement), interpolated from the 2 poses
|
||||
* @param world_P_body_key1 is the key corresponding to the first body poses (time <= time pixel is acquired)
|
||||
* @param world_P_body_key2 is the key corresponding to the second body poses (time >= time pixel is acquired)
|
||||
* @param gamma in [0,1] is the interpolation factor, such that if gamma = 0 the interpolated pose is the same as world_P_body_key
|
||||
* @param K is the (fixed) camera intrinsic calibration
|
||||
*/
|
||||
void add(const StereoPoint2& measured, const Key& world_P_body_key,
|
||||
const Key& body_P_cam_key,
|
||||
const boost::shared_ptr<Cal3_S2Stereo>& K);
|
||||
void add(const Point2& measured,
|
||||
const Key& world_P_body_key1,
|
||||
const Key& world_P_body_key2,
|
||||
const double& gamma,
|
||||
const boost::shared_ptr<CALIBRATION>& K){
|
||||
// store measurements in base class (note: we only store the first key there)
|
||||
Base::add(measured, world_P_body_key1);
|
||||
// but we also store the extrinsic calibration keys in the same order
|
||||
world_P_body_key_pairs_.push_back(std::make_pair(world_P_body_key1,world_P_body_key2));
|
||||
|
||||
// pose keys are assumed to be unique, so we avoid duplicates here
|
||||
if(std::find( this->keys_.begin(), this->keys_.end(), world_P_body_key1) == this->keys_.end())
|
||||
this->keys_.push_back(world_P_body_key1); // add only unique keys
|
||||
if(std::find( this->keys_.begin(), this->keys_.end(), world_P_body_key2) == this->keys_.end())
|
||||
this->keys_.push_back(world_P_body_key2); // add only unique keys
|
||||
|
||||
// store fixed calibration
|
||||
K_all_.push_back(K);
|
||||
}
|
||||
|
||||
/**
|
||||
* Variant of the previous one in which we include a set of measurements
|
||||
* @param measurements vector of the 3m dimensional location of the projection
|
||||
* of a single landmark in the m (stereo) view (the measurements)
|
||||
* @param w_P_body_keys are the ordered keys corresponding to the body poses observing the same landmark
|
||||
* @param body_P_cam_keys are the ordered keys corresponding to the extrinsic camera-to-body poses calibration
|
||||
* (note: elements of this vector do not need to be unique: 2 camera views can share the same calibration)
|
||||
* @param measurements vector of the 2m dimensional location of the projection
|
||||
* of a single landmark in the m views (the measurements)
|
||||
* @param world_P_body_key_pairs vector of (1 for each view) containing the pair of poses from which each view can be interpolated
|
||||
* @param Ks vector of intrinsic calibration objects
|
||||
*/
|
||||
void add(const std::vector<StereoPoint2>& measurements,
|
||||
const KeyVector& w_P_body_keys, const KeyVector& body_P_cam_keys,
|
||||
const std::vector<boost::shared_ptr<Cal3_S2Stereo>>& Ks);
|
||||
// void add(const std::vector<Point2>& measurements,
|
||||
// const std::vector<std::pair<Key,Key>>& world_P_body_key_pairs,
|
||||
// const std::vector<double>& gammas,
|
||||
// const std::vector<boost::shared_ptr<CALIBRATION>>& Ks);
|
||||
|
||||
/**
|
||||
* Variant of the previous one in which we include a set of measurements with
|
||||
* the same noise and calibration
|
||||
* @param measurements vector of the 3m dimensional location of the projection
|
||||
* of a single landmark in the m (stereo) view (the measurements)
|
||||
* @param w_P_body_keys are the ordered keys corresponding to the body poses observing the same landmark
|
||||
* @param body_P_cam_keys are the ordered keys corresponding to the extrinsic camera-to-body poses calibration
|
||||
* (note: elements of this vector do not need to be unique: 2 camera views can share the same calibration)
|
||||
* the same calibration
|
||||
* @param measurements vector of the 2m dimensional location of the projection
|
||||
* of a single landmark in the m views (the measurements)
|
||||
* @param world_P_body_key_pairs vector of (1 for each view) containing the pair of poses from which each view can be interpolated
|
||||
* @param K the (known) camera calibration (same for all measurements)
|
||||
*/
|
||||
void add(const std::vector<StereoPoint2>& measurements,
|
||||
const KeyVector& w_P_body_keys, const KeyVector& body_P_cam_keys,
|
||||
const boost::shared_ptr<Cal3_S2Stereo>& K);
|
||||
// void add(const std::vector<Point2>& measurements,
|
||||
// const std::vector<std::pair<Key,Key>>& world_P_body_key_pairs,
|
||||
// const std::vector<double>& gammas,
|
||||
// const boost::shared_ptr<CALIBRATION>& K);
|
||||
|
||||
/**
|
||||
* print
|
||||
|
@ -130,8 +148,8 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override;
|
||||
|
||||
/// equals
|
||||
const KeyVector& getExtrinsicPoseKeys() const {
|
||||
return body_P_cam_keys_;
|
||||
const std::vector<double> getGammas() const {
|
||||
return gammas_;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -140,18 +158,26 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
double error(const Values& values) const override;
|
||||
|
||||
/** return the calibration object */
|
||||
inline std::vector<boost::shared_ptr<Cal3_S2Stereo>> calibration() const {
|
||||
inline std::vector<boost::shared_ptr<CALIBRATION>> calibration() const {
|
||||
return K_all_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Collect all cameras involved in this factor
|
||||
* @param values Values structure which must contain camera poses
|
||||
* corresponding
|
||||
* to keys involved in this factor
|
||||
* @return vector of Values
|
||||
* corresponding to keys involved in this factor
|
||||
* @return Cameras
|
||||
*/
|
||||
Base::Cameras cameras(const Values& values) const override;
|
||||
typename Base::Cameras cameras(const Values& values) const override {
|
||||
typename Base::Cameras cameras;
|
||||
for (const Key& k : this->keys_) {
|
||||
// const Pose3 world_P_sensor_k =
|
||||
// Base::body_P_sensor_ ? values.at<Pose3>(k) * *Base::body_P_sensor_
|
||||
// : values.at<Pose3>(k);
|
||||
// cameras.emplace_back(world_P_sensor_k, K_);
|
||||
}
|
||||
return cameras;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute jacobian F, E and error vector at a given linearization point
|
||||
|
@ -161,169 +187,169 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
* respect to both the body pose and extrinsic pose), the point Jacobian E,
|
||||
* and the error vector b. Note that the jacobians are computed for a given point.
|
||||
*/
|
||||
void computeJacobiansAndCorrectForMissingMeasurements(
|
||||
FBlocks& Fs, Matrix& E, Vector& b, const Values& values) const {
|
||||
if (!result_) {
|
||||
throw("computeJacobiansWithTriangulatedPoint");
|
||||
} else { // valid result: compute jacobians
|
||||
size_t numViews = measured_.size();
|
||||
E = Matrix::Zero(3 * numViews, 3); // a StereoPoint2 for each view (point jacobian)
|
||||
b = Vector::Zero(3 * numViews); // a StereoPoint2 for each view
|
||||
Matrix dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i, dProject_dPoseCam_i, Ei;
|
||||
|
||||
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
||||
Pose3 w_P_body = values.at<Pose3>(world_P_body_keys_.at(i));
|
||||
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i));
|
||||
StereoCamera camera(
|
||||
w_P_body.compose(body_P_cam, dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i),
|
||||
K_all_[i]);
|
||||
// get jacobians and error vector for current measurement
|
||||
StereoPoint2 reprojectionError_i = StereoPoint2(
|
||||
camera.project(*result_, dProject_dPoseCam_i, Ei) - measured_.at(i));
|
||||
Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12
|
||||
J.block<ZDim, 6>(0, 0) = dProject_dPoseCam_i * dPoseCam_dPoseBody_i; // (3x6) * (6x6)
|
||||
J.block<ZDim, 6>(0, 6) = dProject_dPoseCam_i * dPoseCam_dPoseExt_i; // (3x6) * (6x6)
|
||||
// if the right pixel is invalid, fix jacobians
|
||||
if (std::isnan(measured_.at(i).uR()))
|
||||
{
|
||||
J.block<1, 12>(1, 0) = Matrix::Zero(1, 12);
|
||||
Ei.block<1, 3>(1, 0) = Matrix::Zero(1, 3);
|
||||
reprojectionError_i = StereoPoint2(reprojectionError_i.uL(), 0.0,
|
||||
reprojectionError_i.v());
|
||||
}
|
||||
// fit into the output structures
|
||||
Fs.push_back(J);
|
||||
size_t row = 3 * i;
|
||||
b.segment<ZDim>(row) = -reprojectionError_i.vector();
|
||||
E.block<3, 3>(row, 0) = Ei;
|
||||
}
|
||||
}
|
||||
}
|
||||
// void computeJacobiansAndCorrectForMissingMeasurements(
|
||||
// FBlocks& Fs, Matrix& E, Vector& b, const Values& values) const {
|
||||
// if (!result_) {
|
||||
// throw("computeJacobiansWithTriangulatedPoint");
|
||||
// } else { // valid result: compute jacobians
|
||||
// size_t numViews = measured_.size();
|
||||
// E = Matrix::Zero(3 * numViews, 3); // a StereoPoint2 for each view (point jacobian)
|
||||
// b = Vector::Zero(3 * numViews); // a StereoPoint2 for each view
|
||||
// Matrix dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i, dProject_dPoseCam_i, Ei;
|
||||
//
|
||||
// for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
||||
// Pose3 w_P_body = values.at<Pose3>(world_P_body_key_pairs_.at(i));
|
||||
// Pose3 body_P_cam = values.at<Pose3>(body_P_cam_ this->keys_.at(i));
|
||||
// StereoCamera camera(
|
||||
// w_P_body.compose(body_P_cam, dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i),
|
||||
// K_all_[i]);
|
||||
// // get jacobians and error vector for current measurement
|
||||
// StereoPoint2 reprojectionError_i = StereoPoint2(
|
||||
// camera.project(*result_, dProject_dPoseCam_i, Ei) - measured_.at(i));
|
||||
// Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12
|
||||
// J.block<ZDim, 6>(0, 0) = dProject_dPoseCam_i * dPoseCam_dPoseBody_i; // (3x6) * (6x6)
|
||||
// J.block<ZDim, 6>(0, 6) = dProject_dPoseCam_i * dPoseCam_dPoseExt_i; // (3x6) * (6x6)
|
||||
// // if the right pixel is invalid, fix jacobians
|
||||
// if (std::isnan(measured_.at(i).uR()))
|
||||
// {
|
||||
// J.block<1, 12>(1, 0) = Matrix::Zero(1, 12);
|
||||
// Ei.block<1, 3>(1, 0) = Matrix::Zero(1, 3);
|
||||
// reprojectionError_i = StereoPoint2(reprojectionError_i.uL(), 0.0,
|
||||
// reprojectionError_i.v());
|
||||
// }
|
||||
// // fit into the output structures
|
||||
// Fs.push_back(J);
|
||||
// size_t row = 3 * i;
|
||||
// b.segment<ZDim>(row) = -reprojectionError_i.vector();
|
||||
// E.block<3, 3>(row, 0) = Ei;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
/// linearize and return a Hessianfactor that is an approximation of error(p)
|
||||
boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
|
||||
const Values& values, const double lambda = 0.0, bool diagonalDamping =
|
||||
false) const {
|
||||
|
||||
// we may have multiple cameras sharing the same extrinsic cals, hence the number
|
||||
// of keys may be smaller than 2 * nrMeasurements (which is the upper bound where we
|
||||
// have a body key and an extrinsic calibration key for each measurement)
|
||||
size_t nrUniqueKeys = keys_.size();
|
||||
size_t nrNonuniqueKeys = world_P_body_keys_.size()
|
||||
+ body_P_cam_keys_.size();
|
||||
|
||||
// Create structures for Hessian Factors
|
||||
KeyVector js;
|
||||
std::vector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
||||
std::vector<Vector> gs(nrUniqueKeys);
|
||||
|
||||
if (this->measured_.size() != cameras(values).size())
|
||||
throw std::runtime_error("SmartStereoProjectionHessianFactor: this->"
|
||||
"measured_.size() inconsistent with input");
|
||||
|
||||
// triangulate 3D point at given linearization point
|
||||
triangulateSafe(cameras(values));
|
||||
|
||||
if (!result_) { // failed: return "empty/zero" Hessian
|
||||
for (Matrix& m : Gs)
|
||||
m = Matrix::Zero(DimPose, DimPose);
|
||||
for (Vector& v : gs)
|
||||
v = Vector::Zero(DimPose);
|
||||
return boost::make_shared < RegularHessianFactor<DimPose>
|
||||
> (keys_, Gs, gs, 0.0);
|
||||
}
|
||||
|
||||
// compute Jacobian given triangulated 3D Point
|
||||
FBlocks Fs;
|
||||
Matrix F, E;
|
||||
Vector b;
|
||||
computeJacobiansAndCorrectForMissingMeasurements(Fs, E, b, values);
|
||||
|
||||
// Whiten using noise model
|
||||
noiseModel_->WhitenSystem(E, b);
|
||||
for (size_t i = 0; i < Fs.size(); i++)
|
||||
Fs[i] = noiseModel_->Whiten(Fs[i]);
|
||||
|
||||
// build augmented Hessian (with last row/column being the information vector)
|
||||
Matrix3 P;
|
||||
Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping);
|
||||
|
||||
// marginalize point: note - we reuse the standard SchurComplement function
|
||||
SymmetricBlockMatrix augmentedHessian =
|
||||
Cameras::SchurComplement<3, Dim>(Fs, E, P, b);
|
||||
|
||||
// now pack into an Hessian factor
|
||||
std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term
|
||||
std::fill(dims.begin(), dims.end() - 1, 6);
|
||||
dims.back() = 1;
|
||||
SymmetricBlockMatrix augmentedHessianUniqueKeys;
|
||||
|
||||
// here we have to deal with the fact that some cameras may share the same extrinsic key
|
||||
if (nrUniqueKeys == nrNonuniqueKeys) { // if there is 1 calibration key per camera
|
||||
augmentedHessianUniqueKeys = SymmetricBlockMatrix(
|
||||
dims, Matrix(augmentedHessian.selfadjointView()));
|
||||
} else { // if multiple cameras share a calibration we have to rearrange
|
||||
// the results of the Schur complement matrix
|
||||
std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term
|
||||
std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, 6);
|
||||
nonuniqueDims.back() = 1;
|
||||
augmentedHessian = SymmetricBlockMatrix(
|
||||
nonuniqueDims, Matrix(augmentedHessian.selfadjointView()));
|
||||
|
||||
// these are the keys that correspond to the blocks in augmentedHessian (output of SchurComplement)
|
||||
KeyVector nonuniqueKeys;
|
||||
for (size_t i = 0; i < world_P_body_keys_.size(); i++) {
|
||||
nonuniqueKeys.push_back(world_P_body_keys_.at(i));
|
||||
nonuniqueKeys.push_back(body_P_cam_keys_.at(i));
|
||||
}
|
||||
|
||||
// get map from key to location in the new augmented Hessian matrix (the one including only unique keys)
|
||||
std::map<Key, size_t> keyToSlotMap;
|
||||
for (size_t k = 0; k < nrUniqueKeys; k++) {
|
||||
keyToSlotMap[keys_[k]] = k;
|
||||
}
|
||||
|
||||
// initialize matrix to zero
|
||||
augmentedHessianUniqueKeys = SymmetricBlockMatrix(
|
||||
dims, Matrix::Zero(6 * nrUniqueKeys + 1, 6 * nrUniqueKeys + 1));
|
||||
|
||||
// add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian)
|
||||
// and populates an Hessian that only includes the unique keys (that is what we want to return)
|
||||
for (size_t i = 0; i < nrNonuniqueKeys; i++) { // rows
|
||||
Key key_i = nonuniqueKeys.at(i);
|
||||
|
||||
// update information vector
|
||||
augmentedHessianUniqueKeys.updateOffDiagonalBlock(
|
||||
keyToSlotMap[key_i], nrUniqueKeys,
|
||||
augmentedHessian.aboveDiagonalBlock(i, nrNonuniqueKeys));
|
||||
|
||||
// update blocks
|
||||
for (size_t j = i; j < nrNonuniqueKeys; j++) { // cols
|
||||
Key key_j = nonuniqueKeys.at(j);
|
||||
if (i == j) {
|
||||
augmentedHessianUniqueKeys.updateDiagonalBlock(
|
||||
keyToSlotMap[key_i], augmentedHessian.diagonalBlock(i));
|
||||
} else { // (i < j)
|
||||
if (keyToSlotMap[key_i] != keyToSlotMap[key_j]) {
|
||||
augmentedHessianUniqueKeys.updateOffDiagonalBlock(
|
||||
keyToSlotMap[key_i], keyToSlotMap[key_j],
|
||||
augmentedHessian.aboveDiagonalBlock(i, j));
|
||||
} else {
|
||||
augmentedHessianUniqueKeys.updateDiagonalBlock(
|
||||
keyToSlotMap[key_i],
|
||||
augmentedHessian.aboveDiagonalBlock(i, j)
|
||||
+ augmentedHessian.aboveDiagonalBlock(i, j).transpose());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// update bottom right element of the matrix
|
||||
augmentedHessianUniqueKeys.updateDiagonalBlock(
|
||||
nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys));
|
||||
}
|
||||
return boost::make_shared < RegularHessianFactor<DimPose>
|
||||
> (keys_, augmentedHessianUniqueKeys);
|
||||
}
|
||||
// boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
|
||||
// const Values& values, const double lambda = 0.0, bool diagonalDamping =
|
||||
// false) const {
|
||||
//
|
||||
// // we may have multiple cameras sharing the same extrinsic cals, hence the number
|
||||
// // of keys may be smaller than 2 * nrMeasurements (which is the upper bound where we
|
||||
// // have a body key and an extrinsic calibration key for each measurement)
|
||||
// size_t nrUniqueKeys = this->keys_.size();
|
||||
// size_t nrNonuniqueKeys = world_P_body_key_pairs_.size()
|
||||
// + body_P_cam_ this->keys_.size();
|
||||
//
|
||||
// // Create structures for Hessian Factors
|
||||
// KeyVector js;
|
||||
// std::vector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
||||
// std::vector<Vector> gs(nrUniqueKeys);
|
||||
//
|
||||
// if (this->measured_.size() != cameras(values).size())
|
||||
// throw std::runtime_error("SmartStereoProjectionHessianFactor: this->"
|
||||
// "measured_.size() inconsistent with input");
|
||||
//
|
||||
// // triangulate 3D point at given linearization point
|
||||
// triangulateSafe(cameras(values));
|
||||
//
|
||||
// if (!result_) { // failed: return "empty/zero" Hessian
|
||||
// for (Matrix& m : Gs)
|
||||
// m = Matrix::Zero(DimPose, DimPose);
|
||||
// for (Vector& v : gs)
|
||||
// v = Vector::Zero(DimPose);
|
||||
// return boost::make_shared < RegularHessianFactor<DimPose>
|
||||
// > ( this->keys_, Gs, gs, 0.0);
|
||||
// }
|
||||
//
|
||||
// // compute Jacobian given triangulated 3D Point
|
||||
// FBlocks Fs;
|
||||
// Matrix F, E;
|
||||
// Vector b;
|
||||
// computeJacobiansAndCorrectForMissingMeasurements(Fs, E, b, values);
|
||||
//
|
||||
// // Whiten using noise model
|
||||
// noiseModel_->WhitenSystem(E, b);
|
||||
// for (size_t i = 0; i < Fs.size(); i++)
|
||||
// Fs[i] = noiseModel_->Whiten(Fs[i]);
|
||||
//
|
||||
// // build augmented Hessian (with last row/column being the information vector)
|
||||
// Matrix3 P;
|
||||
// Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping);
|
||||
//
|
||||
// // marginalize point: note - we reuse the standard SchurComplement function
|
||||
// SymmetricBlockMatrix augmentedHessian =
|
||||
// Cameras::SchurComplement<3, Dim>(Fs, E, P, b);
|
||||
//
|
||||
// // now pack into an Hessian factor
|
||||
// std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term
|
||||
// std::fill(dims.begin(), dims.end() - 1, 6);
|
||||
// dims.back() = 1;
|
||||
// SymmetricBlockMatrix augmentedHessianUniqueKeys;
|
||||
//
|
||||
// // here we have to deal with the fact that some cameras may share the same extrinsic key
|
||||
// if (nrUniqueKeys == nrNonuniqueKeys) { // if there is 1 calibration key per camera
|
||||
// augmentedHessianUniqueKeys = SymmetricBlockMatrix(
|
||||
// dims, Matrix(augmentedHessian.selfadjointView()));
|
||||
// } else { // if multiple cameras share a calibration we have to rearrange
|
||||
// // the results of the Schur complement matrix
|
||||
// std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term
|
||||
// std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, 6);
|
||||
// nonuniqueDims.back() = 1;
|
||||
// augmentedHessian = SymmetricBlockMatrix(
|
||||
// nonuniqueDims, Matrix(augmentedHessian.selfadjointView()));
|
||||
//
|
||||
// // these are the keys that correspond to the blocks in augmentedHessian (output of SchurComplement)
|
||||
// KeyVector nonuniqueKeys;
|
||||
// for (size_t i = 0; i < world_P_body_key_pairs_.size(); i++) {
|
||||
// nonuniqueKeys.push_back(world_P_body_key_pairs_.at(i));
|
||||
// nonuniqueKeys.push_back(body_P_cam_ this->keys_.at(i));
|
||||
// }
|
||||
//
|
||||
// // get map from key to location in the new augmented Hessian matrix (the one including only unique keys)
|
||||
// std::map<Key, size_t> keyToSlotMap;
|
||||
// for (size_t k = 0; k < nrUniqueKeys; k++) {
|
||||
// keyToSlotMap[ this->keys_[k]] = k;
|
||||
// }
|
||||
//
|
||||
// // initialize matrix to zero
|
||||
// augmentedHessianUniqueKeys = SymmetricBlockMatrix(
|
||||
// dims, Matrix::Zero(6 * nrUniqueKeys + 1, 6 * nrUniqueKeys + 1));
|
||||
//
|
||||
// // add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian)
|
||||
// // and populates an Hessian that only includes the unique keys (that is what we want to return)
|
||||
// for (size_t i = 0; i < nrNonuniqueKeys; i++) { // rows
|
||||
// Key key_i = nonuniqueKeys.at(i);
|
||||
//
|
||||
// // update information vector
|
||||
// augmentedHessianUniqueKeys.updateOffDiagonalBlock(
|
||||
// keyToSlotMap[key_i], nrUniqueKeys,
|
||||
// augmentedHessian.aboveDiagonalBlock(i, nrNonuniqueKeys));
|
||||
//
|
||||
// // update blocks
|
||||
// for (size_t j = i; j < nrNonuniqueKeys; j++) { // cols
|
||||
// Key key_j = nonuniqueKeys.at(j);
|
||||
// if (i == j) {
|
||||
// augmentedHessianUniqueKeys.updateDiagonalBlock(
|
||||
// keyToSlotMap[key_i], augmentedHessian.diagonalBlock(i));
|
||||
// } else { // (i < j)
|
||||
// if (keyToSlotMap[key_i] != keyToSlotMap[key_j]) {
|
||||
// augmentedHessianUniqueKeys.updateOffDiagonalBlock(
|
||||
// keyToSlotMap[key_i], keyToSlotMap[key_j],
|
||||
// augmentedHessian.aboveDiagonalBlock(i, j));
|
||||
// } else {
|
||||
// augmentedHessianUniqueKeys.updateDiagonalBlock(
|
||||
// keyToSlotMap[key_i],
|
||||
// augmentedHessian.aboveDiagonalBlock(i, j)
|
||||
// + augmentedHessian.aboveDiagonalBlock(i, j).transpose());
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// // update bottom right element of the matrix
|
||||
// augmentedHessianUniqueKeys.updateDiagonalBlock(
|
||||
// nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys));
|
||||
// }
|
||||
// return boost::make_shared < RegularHessianFactor<DimPose>
|
||||
// > ( this->keys_, augmentedHessianUniqueKeys);
|
||||
// }
|
||||
|
||||
/**
|
||||
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM)
|
||||
|
@ -333,12 +359,12 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
boost::shared_ptr<GaussianFactor> linearizeDamped(
|
||||
const Values& values, const double lambda = 0.0) const {
|
||||
// depending on flag set on construction we may linearize to different linear factors
|
||||
switch (params_.linearizationMode) {
|
||||
case HESSIAN:
|
||||
return createHessianFactor(values, lambda);
|
||||
switch (this->params_.linearizationMode) {
|
||||
// case HESSIAN:
|
||||
// return createHessianFactor(values, lambda);
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"SmartStereoProjectionFactorPP: unknown linearization mode");
|
||||
"SmartProjectionPoseFactorRollingShutter: unknown linearization mode");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -361,9 +387,9 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
// end of class declaration
|
||||
|
||||
/// traits
|
||||
template<>
|
||||
struct traits<SmartStereoProjectionFactorPP> : public Testable<
|
||||
SmartStereoProjectionFactorPP> {
|
||||
template<class CALIBRATION>
|
||||
struct traits<SmartProjectionPoseFactorRollingShutter<CALIBRATION> > : public Testable<
|
||||
SmartProjectionPoseFactorRollingShutter<CALIBRATION> > {
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -10,19 +10,17 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testSmartProjectionPoseFactor.cpp
|
||||
* @brief Unit tests for ProjectionFactor Class
|
||||
* @author Chris Beall
|
||||
* @file testSmartProjectionPoseFactorRollingShutter.cpp
|
||||
* @brief Unit tests for SmartProjectionPoseFactorRollingShutter Class
|
||||
* @author Luca Carlone
|
||||
* @author Zsolt Kira
|
||||
* @author Frank Dellaert
|
||||
* @date Sept 2013
|
||||
* @date July 2021
|
||||
*/
|
||||
|
||||
#include "smartFactorScenarios.h"
|
||||
#include "gtsam/slam/tests/smartFactorScenarios.h"
|
||||
#include <gtsam/slam/ProjectionFactor.h>
|
||||
#include <gtsam/slam/PoseTranslationPrior.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam_unstable/slam/SmartProjectionPoseFactorRollingShutter.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/base/serializationTestHelpers.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
@ -52,13 +50,13 @@ LevenbergMarquardtParams lmParams;
|
|||
// Make more verbose like so (in tests):
|
||||
// params.verbosityLM = LevenbergMarquardtParams::SUMMARY;
|
||||
|
||||
/* ************************************************************************* */
|
||||
/* ************************************************************************* *
|
||||
TEST( SmartProjectionPoseFactor, Constructor) {
|
||||
using namespace vanillaPose;
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor(model, sharedK));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/* ************************************************************************* *
|
||||
TEST( SmartProjectionPoseFactor, Constructor2) {
|
||||
using namespace vanillaPose;
|
||||
SmartProjectionParams params;
|
||||
|
@ -66,14 +64,14 @@ TEST( SmartProjectionPoseFactor, Constructor2) {
|
|||
SmartFactor factor1(model, sharedK, params);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/* ************************************************************************* *
|
||||
TEST( SmartProjectionPoseFactor, Constructor3) {
|
||||
using namespace vanillaPose;
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor(model, sharedK));
|
||||
factor1->add(measurement1, x1);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/* ************************************************************************* *
|
||||
TEST( SmartProjectionPoseFactor, Constructor4) {
|
||||
using namespace vanillaPose;
|
||||
SmartProjectionParams params;
|
||||
|
@ -82,7 +80,7 @@ TEST( SmartProjectionPoseFactor, Constructor4) {
|
|||
factor1.add(measurement1, x1);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/* ************************************************************************* *
|
||||
TEST( SmartProjectionPoseFactor, params) {
|
||||
using namespace vanillaPose;
|
||||
SmartProjectionParams params;
|
||||
|
@ -93,7 +91,7 @@ TEST( SmartProjectionPoseFactor, params) {
|
|||
EXPECT_DOUBLES_EQUAL(1e-3, rt, 1e-7);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/* ************************************************************************* *
|
||||
TEST( SmartProjectionPoseFactor, Equals ) {
|
||||
using namespace vanillaPose;
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor(model, sharedK));
|
||||
|
@ -105,7 +103,7 @@ TEST( SmartProjectionPoseFactor, Equals ) {
|
|||
CHECK(assert_equal(*factor1, *factor2));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST( SmartProjectionPoseFactor, noiseless ) {
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
@ -163,7 +161,7 @@ TEST( SmartProjectionPoseFactor, noiseless ) {
|
|||
EXPECT_DOUBLES_EQUAL(expectedError, actualError3, 1e-6);
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST( SmartProjectionPoseFactor, noisy ) {
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
@ -197,7 +195,7 @@ TEST( SmartProjectionPoseFactor, noisy ) {
|
|||
DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST(SmartProjectionPoseFactor, smartFactorWithSensorBodyTransform) {
|
||||
using namespace vanillaPose;
|
||||
|
||||
|
@ -272,7 +270,7 @@ TEST(SmartProjectionPoseFactor, smartFactorWithSensorBodyTransform) {
|
|||
EXPECT(assert_equal(wTb3, result.at<Pose3>(x3)));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST( SmartProjectionPoseFactor, 3poses_smart_projection_factor ) {
|
||||
|
||||
using namespace vanillaPose2;
|
||||
|
@ -333,7 +331,7 @@ TEST( SmartProjectionPoseFactor, 3poses_smart_projection_factor ) {
|
|||
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST( SmartProjectionPoseFactor, Factors ) {
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
@ -497,7 +495,7 @@ TEST( SmartProjectionPoseFactor, Factors ) {
|
|||
}
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST( SmartProjectionPoseFactor, 3poses_iterative_smart_projection_factor ) {
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
@ -551,7 +549,7 @@ TEST( SmartProjectionPoseFactor, 3poses_iterative_smart_projection_factor ) {
|
|||
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-7));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST( SmartProjectionPoseFactor, jacobianSVD ) {
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
@ -607,7 +605,7 @@ TEST( SmartProjectionPoseFactor, jacobianSVD ) {
|
|||
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST( SmartProjectionPoseFactor, landmarkDistance ) {
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
@ -666,7 +664,7 @@ TEST( SmartProjectionPoseFactor, landmarkDistance ) {
|
|||
EXPECT(assert_equal(values.at<Pose3>(x3), result.at<Pose3>(x3)));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST( SmartProjectionPoseFactor, dynamicOutlierRejection ) {
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
@ -732,58 +730,7 @@ TEST( SmartProjectionPoseFactor, dynamicOutlierRejection ) {
|
|||
EXPECT(assert_equal(cam3.pose(), result.at<Pose3>(x3)));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionPoseFactor, jacobianQ ) {
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
|
||||
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
SmartProjectionParams params;
|
||||
params.setLinearizationMode(gtsam::JACOBIAN_Q);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor1(
|
||||
new SmartFactor(model, sharedK, params));
|
||||
smartFactor1->add(measurements_cam1, views);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor2(
|
||||
new SmartFactor(model, sharedK, params));
|
||||
smartFactor2->add(measurements_cam2, views);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor3(
|
||||
new SmartFactor(model, sharedK, params));
|
||||
smartFactor3->add(measurements_cam3, views);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, cam1.pose(), noisePrior);
|
||||
graph.addPrior(x2, cam2.pose(), noisePrior);
|
||||
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
values.insert(x3, pose_above * noise_pose);
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST( SmartProjectionPoseFactor, 3poses_projection_factor ) {
|
||||
|
||||
using namespace vanillaPose2;
|
||||
|
@ -830,7 +777,7 @@ TEST( SmartProjectionPoseFactor, 3poses_projection_factor ) {
|
|||
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-7));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST( SmartProjectionPoseFactor, CheckHessian) {
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
|
@ -912,144 +859,7 @@ TEST( SmartProjectionPoseFactor, CheckHessian) {
|
|||
EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_factor ) {
|
||||
using namespace vanillaPose2;
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
|
||||
// Two different cameras, at the same position, but different rotations
|
||||
Pose3 pose2 = level_pose * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
|
||||
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
|
||||
Camera cam2(pose2, sharedK2);
|
||||
Camera cam3(pose3, sharedK2);
|
||||
|
||||
Point2Vector measurements_cam1, measurements_cam2;
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
|
||||
SmartProjectionParams params;
|
||||
params.setRankTolerance(50);
|
||||
params.setDegeneracyMode(gtsam::HANDLE_INFINITY);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor1(
|
||||
new SmartFactor(model, sharedK2, params));
|
||||
smartFactor1->add(measurements_cam1, views);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor2(
|
||||
new SmartFactor(model, sharedK2, params));
|
||||
smartFactor2->add(measurements_cam2, views);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
|
||||
Point3 positionPrior = Point3(0, 0, 1);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.addPrior(x1, cam1.pose(), noisePrior);
|
||||
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x2, positionPrior, noisePriorTranslation);
|
||||
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x3, positionPrior, noisePriorTranslation);
|
||||
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, pose2 * noise_pose);
|
||||
values.insert(x3, pose3 * noise_pose);
|
||||
|
||||
// params.verbosityLM = LevenbergMarquardtParams::SUMMARY;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
Values result = optimizer.optimize();
|
||||
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ) {
|
||||
|
||||
// this test considers a condition in which the cheirality constraint is triggered
|
||||
using namespace vanillaPose;
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
|
||||
// Two different cameras, at the same position, but different rotations
|
||||
Pose3 pose2 = level_pose
|
||||
* Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
||||
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
||||
Camera cam2(pose2, sharedK);
|
||||
Camera cam3(pose3, sharedK);
|
||||
|
||||
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
SmartProjectionParams params;
|
||||
params.setRankTolerance(10);
|
||||
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor1(
|
||||
new SmartFactor(model, sharedK, params));
|
||||
smartFactor1->add(measurements_cam1, views);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor2(
|
||||
new SmartFactor(model, sharedK, params));
|
||||
smartFactor2->add(measurements_cam2, views);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor3(
|
||||
new SmartFactor(model, sharedK, params));
|
||||
smartFactor3->add(measurements_cam3, views);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3,
|
||||
0.10);
|
||||
Point3 positionPrior = Point3(0, 0, 1);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, cam1.pose(), noisePrior);
|
||||
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x2, positionPrior, noisePriorTranslation);
|
||||
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x3, positionPrior, noisePriorTranslation);
|
||||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
values.insert(x3, pose3 * noise_pose);
|
||||
EXPECT(
|
||||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
|
||||
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
|
||||
-0.130455917),
|
||||
Point3(0.0897734171, -0.110201006, 0.901022872)),
|
||||
values.at<Pose3>(x3)));
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
|
||||
// Since we do not do anything on degenerate instances (ZERO_ON_DEGENERACY)
|
||||
// rotation remains the same as the initial guess, but position is fixed by PoseTranslationPrior
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
EXPECT(assert_equal(Pose3(values.at<Pose3>(x3).rotation(),
|
||||
Point3(0,0,1)), result.at<Pose3>(x3)));
|
||||
#else
|
||||
// if the check is disabled, no cheirality exception if thrown and the pose converges to the right rotation
|
||||
// with modest accuracy since the configuration is essentially degenerate without the translation due to noise (noise_pose)
|
||||
EXPECT(assert_equal(pose3, result.at<Pose3>(x3),1e-3));
|
||||
#endif
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
/* *************************************************************************
|
||||
TEST( SmartProjectionPoseFactor, Hessian ) {
|
||||
|
||||
using namespace vanillaPose2;
|
||||
|
@ -1080,299 +890,6 @@ TEST( SmartProjectionPoseFactor, Hessian ) {
|
|||
// check that it is correctly scaled when using noiseProjection = [1/4 0; 0 1/4]
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionPoseFactor, HessianWithRotation ) {
|
||||
// cout << " ************************ SmartProjectionPoseFactor: rotated Hessian **********************" << endl;
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
|
||||
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
|
||||
SmartFactor::shared_ptr smartFactorInstance(new SmartFactor(model, sharedK));
|
||||
smartFactorInstance->add(measurements_cam1, views);
|
||||
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
values.insert(x3, cam3.pose());
|
||||
|
||||
boost::shared_ptr<GaussianFactor> factor = smartFactorInstance->linearize(
|
||||
values);
|
||||
|
||||
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
|
||||
|
||||
Values rotValues;
|
||||
rotValues.insert(x1, poseDrift.compose(level_pose));
|
||||
rotValues.insert(x2, poseDrift.compose(pose_right));
|
||||
rotValues.insert(x3, poseDrift.compose(pose_above));
|
||||
|
||||
boost::shared_ptr<GaussianFactor> factorRot = smartFactorInstance->linearize(
|
||||
rotValues);
|
||||
|
||||
// Hessian is invariant to rotations in the nondegenerate case
|
||||
EXPECT(assert_equal(factor->information(), factorRot->information(), 1e-7));
|
||||
|
||||
Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
|
||||
Point3(10, -4, 5));
|
||||
|
||||
Values tranValues;
|
||||
tranValues.insert(x1, poseDrift2.compose(level_pose));
|
||||
tranValues.insert(x2, poseDrift2.compose(pose_right));
|
||||
tranValues.insert(x3, poseDrift2.compose(pose_above));
|
||||
|
||||
boost::shared_ptr<GaussianFactor> factorRotTran =
|
||||
smartFactorInstance->linearize(tranValues);
|
||||
|
||||
// Hessian is invariant to rotations and translations in the nondegenerate case
|
||||
EXPECT(assert_equal(factor->information(), factorRotTran->information(), 1e-7));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionPoseFactor, HessianWithRotationDegenerate ) {
|
||||
|
||||
using namespace vanillaPose2;
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
|
||||
// All cameras have the same pose so will be degenerate !
|
||||
Camera cam2(level_pose, sharedK2);
|
||||
Camera cam3(level_pose, sharedK2);
|
||||
|
||||
Point2Vector measurements_cam1;
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedK2));
|
||||
smartFactor->add(measurements_cam1, views);
|
||||
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
values.insert(x3, cam3.pose());
|
||||
|
||||
boost::shared_ptr<GaussianFactor> factor = smartFactor->linearize(values);
|
||||
|
||||
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
|
||||
|
||||
Values rotValues;
|
||||
rotValues.insert(x1, poseDrift.compose(level_pose));
|
||||
rotValues.insert(x2, poseDrift.compose(level_pose));
|
||||
rotValues.insert(x3, poseDrift.compose(level_pose));
|
||||
|
||||
boost::shared_ptr<GaussianFactor> factorRot = //
|
||||
smartFactor->linearize(rotValues);
|
||||
|
||||
// Hessian is invariant to rotations in the nondegenerate case
|
||||
EXPECT(assert_equal(factor->information(), factorRot->information(), 1e-7));
|
||||
|
||||
Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
|
||||
Point3(10, -4, 5));
|
||||
|
||||
Values tranValues;
|
||||
tranValues.insert(x1, poseDrift2.compose(level_pose));
|
||||
tranValues.insert(x2, poseDrift2.compose(level_pose));
|
||||
tranValues.insert(x3, poseDrift2.compose(level_pose));
|
||||
|
||||
boost::shared_ptr<GaussianFactor> factorRotTran = smartFactor->linearize(
|
||||
tranValues);
|
||||
|
||||
// Hessian is invariant to rotations and translations in the nondegenerate case
|
||||
EXPECT(assert_equal(factor->information(), factorRotTran->information(), 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartProjectionPoseFactor, ConstructorWithCal3Bundler) {
|
||||
using namespace bundlerPose;
|
||||
SmartProjectionParams params;
|
||||
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
||||
SmartFactor factor(model, sharedBundlerK, params);
|
||||
factor.add(measurement1, x1);
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionPoseFactor, Cal3Bundler ) {
|
||||
|
||||
using namespace bundlerPose;
|
||||
|
||||
// three landmarks ~5 meters in front of camera
|
||||
Point3 landmark3(3, 0, 3.0);
|
||||
|
||||
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
|
||||
SmartFactor::shared_ptr smartFactor1(new SmartFactor(model, sharedBundlerK));
|
||||
smartFactor1->add(measurements_cam1, views);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor2(new SmartFactor(model, sharedBundlerK));
|
||||
smartFactor2->add(measurements_cam2, views);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor3(new SmartFactor(model, sharedBundlerK));
|
||||
smartFactor3->add(measurements_cam3, views);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, cam1.pose(), noisePrior);
|
||||
graph.addPrior(x2, cam2.pose(), noisePrior);
|
||||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
// initialize third pose with some noise, we expect it to move back to original pose_above
|
||||
values.insert(x3, pose_above * noise_pose);
|
||||
EXPECT(
|
||||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
EXPECT(assert_equal(cam3.pose(), result.at<Pose3>(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionPoseFactor, Cal3BundlerRotationOnly ) {
|
||||
|
||||
using namespace bundlerPose;
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
|
||||
// Two different cameras
|
||||
Pose3 pose2 = level_pose
|
||||
* Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
||||
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
||||
Camera cam2(pose2, sharedBundlerK);
|
||||
Camera cam3(pose3, sharedBundlerK);
|
||||
|
||||
// landmark3 at 3 meters now
|
||||
Point3 landmark3(3, 0, 3.0);
|
||||
|
||||
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
SmartProjectionParams params;
|
||||
params.setRankTolerance(10);
|
||||
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor1(
|
||||
new SmartFactor(model, sharedBundlerK, params));
|
||||
smartFactor1->add(measurements_cam1, views);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor2(
|
||||
new SmartFactor(model, sharedBundlerK, params));
|
||||
smartFactor2->add(measurements_cam2, views);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor3(
|
||||
new SmartFactor(model, sharedBundlerK, params));
|
||||
smartFactor3->add(measurements_cam3, views);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3,
|
||||
0.10);
|
||||
Point3 positionPrior = Point3(0, 0, 1);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, cam1.pose(), noisePrior);
|
||||
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x2, positionPrior, noisePriorTranslation);
|
||||
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x3, positionPrior, noisePriorTranslation);
|
||||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
// initialize third pose with some noise, we expect it to move back to original pose_above
|
||||
values.insert(x3, pose3 * noise_pose);
|
||||
EXPECT(
|
||||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
|
||||
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
|
||||
-0.130455917),
|
||||
Point3(0.0897734171, -0.110201006, 0.901022872)),
|
||||
values.at<Pose3>(x3)));
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
|
||||
EXPECT(
|
||||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
|
||||
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
|
||||
-0.130455917),
|
||||
Point3(0.0897734171, -0.110201006, 0.901022872)),
|
||||
values.at<Pose3>(x3)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian");
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit");
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel");
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal");
|
||||
|
||||
TEST(SmartProjectionPoseFactor, serialize) {
|
||||
using namespace vanillaPose;
|
||||
using namespace gtsam::serializationTestHelpers;
|
||||
SmartProjectionParams params;
|
||||
params.setRankTolerance(rankTol);
|
||||
SmartFactor factor(model, sharedK, params);
|
||||
|
||||
EXPECT(equalsObj(factor));
|
||||
EXPECT(equalsXML(factor));
|
||||
EXPECT(equalsBinary(factor));
|
||||
}
|
||||
|
||||
TEST(SmartProjectionPoseFactor, serialize2) {
|
||||
using namespace vanillaPose;
|
||||
using namespace gtsam::serializationTestHelpers;
|
||||
SmartProjectionParams params;
|
||||
params.setRankTolerance(rankTol);
|
||||
Pose3 bts;
|
||||
SmartFactor factor(model, sharedK, bts, params);
|
||||
|
||||
// insert some measurments
|
||||
KeyVector key_view;
|
||||
Point2Vector meas_view;
|
||||
key_view.push_back(Symbol('x', 1));
|
||||
meas_view.push_back(Point2(10, 10));
|
||||
factor.add(meas_view, key_view);
|
||||
|
||||
EXPECT(equalsObj(factor));
|
||||
EXPECT(equalsXML(factor));
|
||||
EXPECT(equalsBinary(factor));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
Loading…
Reference in New Issue