286 lines
9.6 KiB
Python
286 lines
9.6 KiB
Python
"""This is the script executed by workers of the quality control pipline."""
|
|
|
|
import argparse
|
|
import datetime
|
|
from os.path import basename
|
|
from pprint import pprint
|
|
import re
|
|
import subprocess
|
|
|
|
from google.cloud import bigquery
|
|
from google.cloud import datastore
|
|
|
|
|
|
class Pattern(object):
|
|
"""Defines a pattern for regular expression matching."""
|
|
|
|
def __init__(self, pattern):
|
|
self.regex = re.compile(pattern, re.MULTILINE)
|
|
|
|
def extract(self, text):
|
|
"""Returns a dictionary of named capture groups to extracted output.
|
|
|
|
Args:
|
|
text: input to parse
|
|
|
|
Returns an empty dict if no match was found.
|
|
"""
|
|
match = self.regex.search(text)
|
|
if match is None:
|
|
return {}
|
|
return match.groupdict()
|
|
|
|
def extract_last_occurence(self, text):
|
|
"""Returns tuple of extracted outputs.
|
|
|
|
Args:
|
|
text: input to parse
|
|
|
|
Returns the information extracted from the last match. Returns
|
|
None if no match was found.
|
|
"""
|
|
matches = self.regex.findall(text)
|
|
if matches:
|
|
return None
|
|
return matches[-1]
|
|
|
|
|
|
# BigQuery table schema
|
|
SCHEMA = [
|
|
bigquery.SchemaField('date', 'DATE'),
|
|
bigquery.SchemaField('commit_sha1', 'STRING'),
|
|
bigquery.SchemaField('job_id', 'INTEGER'),
|
|
bigquery.SchemaField('rosbag', 'STRING'),
|
|
bigquery.SchemaField('user_time_secs', 'FLOAT'),
|
|
bigquery.SchemaField('system_time_secs', 'FLOAT'),
|
|
bigquery.SchemaField('wall_time_secs', 'FLOAT'),
|
|
bigquery.SchemaField('max_set_size_kbytes', 'INTEGER'),
|
|
bigquery.SchemaField('constraints_count', 'INTEGER'),
|
|
bigquery.SchemaField('constraints_score_minimum', 'FLOAT'),
|
|
bigquery.SchemaField('constraints_score_maximum', 'FLOAT'),
|
|
bigquery.SchemaField('constraints_score_mean', 'FLOAT')
|
|
]
|
|
|
|
# Pattern matchers for the various fields of the '/usr/bin/time -v' output
|
|
USER_TIME_PATTERN = Pattern(
|
|
r'^\s*User time \(seconds\): (?P<user_time>\d+.\d+|\d+)')
|
|
SYSTEM_TIME_PATTERN = Pattern(
|
|
r'^\s*System time \(seconds\): (?P<system_time>\d+.\d+|\d+)')
|
|
WALL_TIME_PATTERN = Pattern(
|
|
r'^\s*Elapsed \(wall clock\) time \(h:mm:ss or m:ss\): '
|
|
r'((?P<hours>\d{1,2}):|)(?P<minutes>\d{1,2}):(?P<seconds>\d{2}\.\d{2})')
|
|
MAX_RES_SET_SIZE_PATTERN = Pattern(
|
|
r'^\s*Maximum resident set size \(kbytes\): (?P<max_set_size>\d+)')
|
|
CONSTRAINT_STATS_PATTERN = Pattern(
|
|
r'Score histogram:[\n\r]+'
|
|
r'Count:\s+(?P<constraints_count>\d+)\s+'
|
|
r'Min:\s+(?P<constraints_score_min>\d+\.\d+)\s+'
|
|
r'Max:\s+(?P<constraints_score_max>\d+\.\d+)\s+'
|
|
r'Mean:\s+(?P<constraints_score_mean>\d+\.\d+)')
|
|
|
|
# Pattern matcher for extracting the HEAD commit SHA-1 hash.
|
|
GIT_SHA1_PATTERN = Pattern(r'^(?P<sha1>[0-9a-f]{40})\s+HEAD')
|
|
|
|
|
|
def get_head_git_sha1():
|
|
"""Returns the SHA-1 hash of the commit tagged HEAD."""
|
|
output = subprocess.check_output([
|
|
'git', 'ls-remote',
|
|
'https://github.com/googlecartographer/cartographer.git'
|
|
])
|
|
parsed = GIT_SHA1_PATTERN.extract(output)
|
|
return parsed['sha1']
|
|
|
|
|
|
def extract_stats(inp):
|
|
"""Returns a dictionary of stats."""
|
|
result = {}
|
|
|
|
parsed = USER_TIME_PATTERN.extract(inp)
|
|
result['user_time_secs'] = float(parsed['user_time'])
|
|
|
|
parsed = SYSTEM_TIME_PATTERN.extract(inp)
|
|
result['system_time_secs'] = float(parsed['system_time'])
|
|
|
|
parsed = WALL_TIME_PATTERN.extract(inp)
|
|
result['wall_time_secs'] = float(parsed['hours'] or 0.) * 3600 + float(
|
|
parsed['minutes']) * 60 + float(parsed['seconds'])
|
|
|
|
parsed = MAX_RES_SET_SIZE_PATTERN.extract(inp)
|
|
result['max_set_size_kbytes'] = int(parsed['max_set_size'])
|
|
|
|
parsed = CONSTRAINT_STATS_PATTERN.extract_last_occurence(inp)
|
|
print parsed
|
|
result['constraints_count'] = int(parsed[0])
|
|
result['constraints_score_min'] = float(parsed[1])
|
|
result['constraints_score_max'] = float(parsed[2])
|
|
result['constraints_score_mean'] = float(parsed[3])
|
|
|
|
return result
|
|
|
|
|
|
def retrieve_entity(datastore_client, kind, identifier):
|
|
"""Convenience function for Datastore entity retrieval."""
|
|
key = datastore_client.key(kind, identifier)
|
|
return datastore_client.get(key)
|
|
|
|
|
|
def create_job_selector(worker_id, num_workers):
|
|
"""Constructs a round-robin job selector."""
|
|
return lambda job_id: job_id % num_workers == worker_id
|
|
|
|
|
|
def run_cmd(cmd):
|
|
"""Runs command both printing its stdout output and returning it as string."""
|
|
p = subprocess.Popen(
|
|
cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
|
run_cmd.output = []
|
|
|
|
def process(line):
|
|
run_cmd.output.append(line)
|
|
print line.rstrip()
|
|
|
|
while p.poll() is None:
|
|
process(p.stdout.readline())
|
|
process(p.stdout.read())
|
|
return '\n'.join(run_cmd.output)
|
|
|
|
|
|
class Job(object):
|
|
"""Represents a single job to be executed.
|
|
|
|
A job consists of a combination of rosbag and configuration and launch files.
|
|
"""
|
|
|
|
def __init__(self, datastore_client, job_id):
|
|
self.id = job_id
|
|
entity = retrieve_entity(datastore_client, 'Job', job_id)
|
|
self.launch_file = entity['launch_file']
|
|
self.assets_writer_launch_file = entity['assets_writer_launch_file']
|
|
self.assets_writer_config_file = entity['assets_writer_config_file']
|
|
self.rosbag = entity['rosbag']
|
|
|
|
def __repr__(self):
|
|
return 'Job: id : {} launch_file: {} rosbag: {}'.format(
|
|
self.id, self.launch_file, self.rosbag)
|
|
|
|
def run(self, ros_distro, run_id):
|
|
"""Runs the job with ROS distro 'ros_distro'."""
|
|
print 'running job {}'.format(self.id)
|
|
# Copy the rosbag to scratch space
|
|
scratch_dir = '/data/{}'.format(self.id)
|
|
rosbag_filename = basename(self.rosbag)
|
|
run_cmd('mkdir {}'.format(scratch_dir))
|
|
run_cmd('gsutil cp gs://{} {}/{}'.format(self.rosbag, scratch_dir,
|
|
rosbag_filename))
|
|
|
|
# Creates pbstream
|
|
output = run_cmd(
|
|
'/bin/bash -c \"source /opt/ros/{}/setup.bash && source '
|
|
'/opt/cartographer_ros/setup.bash && /usr/bin/time -v roslaunch '
|
|
'cartographer_ros {} bag_filenames:={}/{} no_rviz:=true\"'.format(
|
|
ros_distro, self.launch_file, scratch_dir, rosbag_filename))
|
|
|
|
# Creates assets.
|
|
run_cmd('/bin/bash -c \"source /opt/ros/{}/setup.bash && source '
|
|
'/opt/cartographer_ros/setup.bash && /usr/bin/time -v roslaunch '
|
|
'cartographer_ros {} bag_filenames:={}/{} '
|
|
'pose_graph_filename:={}/{}.pbstream config_file:={}\"'.format(
|
|
ros_distro, self.assets_writer_launch_file, scratch_dir,
|
|
rosbag_filename, scratch_dir, rosbag_filename,
|
|
self.assets_writer_config_file))
|
|
|
|
# Copies assets to bucket.
|
|
run_cmd('gsutil cp {}/{}.pbstream '
|
|
'gs://cartographer-ci-artifacts/{}/{}/{}.pbstream'.format(
|
|
scratch_dir, rosbag_filename, run_id, self.id, rosbag_filename))
|
|
run_cmd('gsutil cp {}/{}_* gs://cartographer-ci-artifacts/{}/{}/'.format(
|
|
scratch_dir, rosbag_filename, run_id, self.id))
|
|
|
|
info = extract_stats(output)
|
|
info['rosbag'] = rosbag_filename
|
|
return info
|
|
|
|
|
|
class Worker(object):
|
|
"""Represents a single worker that executes a sequence of Jobs."""
|
|
|
|
def __init__(self, datastore_client, pipeline_id, run_id):
|
|
entity = retrieve_entity(datastore_client, 'PipelineConfig', pipeline_id)
|
|
self.pipeline_id = pipeline_id
|
|
self.jobs = [Job(datastore_client, job_id) for job_id in entity['jobs']]
|
|
self.scratch_dir = entity['scratch_dir']
|
|
self.ros_distro = entity['ros_distro']
|
|
self.run_id = run_id
|
|
|
|
def __repr__(self):
|
|
result = 'Worker: pipeline_id: {}\n'.format(self.pipeline_id)
|
|
for job in self.jobs:
|
|
result += '{}\n'.format(str(job))
|
|
return result
|
|
|
|
def run_jobs(self, selector):
|
|
outputs = {}
|
|
for idx, job in enumerate(self.jobs):
|
|
if selector(idx):
|
|
output = job.run(self.ros_distro, self.run_id)
|
|
outputs[job.id] = output
|
|
else:
|
|
print 'job {}: skip'.format(job.id)
|
|
return outputs
|
|
|
|
|
|
def publish_stats_to_big_query(stats_dict, now, head_sha1):
|
|
"""Publishes metrics to BigQuery."""
|
|
bigquery_client = bigquery.Client()
|
|
dataset = bigquery_client.dataset('Cartographer')
|
|
table = dataset.table('metrics')
|
|
rows_to_insert = []
|
|
for job_identifier, job_info in stats_dict.iteritems():
|
|
print job_info
|
|
data = ('{}-{}-{}'.format(
|
|
now.year, now.month,
|
|
now.day), head_sha1, job_identifier, job_info['rosbag'],
|
|
job_info['user_time_secs'], job_info['system_time_secs'],
|
|
job_info['wall_time_secs'], job_info['max_set_size_kbytes'],
|
|
job_info['constraints_count'], job_info['constraints_score_min'],
|
|
job_info['constraints_score_max'],
|
|
job_info['constraints_score_mean'])
|
|
rows_to_insert.append(data)
|
|
|
|
errors = bigquery_client.create_rows(
|
|
table, rows_to_insert, selected_fields=SCHEMA)
|
|
if not errors:
|
|
print 'Pushed {} row(s) into Cartographer:metrics'.format(
|
|
len(rows_to_insert))
|
|
else:
|
|
print 'Errors:'
|
|
pprint(errors)
|
|
|
|
|
|
def parse_arguments():
|
|
"""Parses the command line arguments."""
|
|
parser = argparse.ArgumentParser(
|
|
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter)
|
|
parser.add_argument('--worker_id', type=int)
|
|
parser.add_argument('--num_workers', type=int)
|
|
parser.add_argument('--pipeline_id', type=str)
|
|
return parser.parse_args()
|
|
|
|
|
|
def main():
|
|
args = parse_arguments()
|
|
ds_client = datastore.Client()
|
|
job_selector = create_job_selector(int(args.worker_id), int(args.num_workers))
|
|
head_sha1 = get_head_git_sha1()
|
|
now = datetime.datetime.now()
|
|
pipeline_run_id = '{}-{}-{}_{}'.format(now.year, now.month, now.day,
|
|
head_sha1)
|
|
worker = Worker(ds_client, args.pipeline_id, pipeline_run_id)
|
|
stats_dict = worker.run_jobs(job_selector)
|
|
publish_stats_to_big_query(stats_dict, now, head_sha1)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|