"""This is the script executed by workers of the quality control pipline.""" import argparse import datetime from os.path import basename from pprint import pprint import re import subprocess from google.cloud import bigquery from google.cloud import datastore class Pattern(object): """Defines a pattern for regular expression matching.""" def __init__(self, pattern): self.regex = re.compile(pattern, re.MULTILINE) def extract(self, text): """Returns a dictionary of named capture groups to extracted output. Args: text: input to parse Returns an empty dict if no match was found. """ match = self.regex.search(text) if match is None: return {} return match.groupdict() def extract_last_occurence(self, text): """Returns tuple of extracted outputs. Args: text: input to parse Returns the information extracted from the last match. Returns None if no match was found. """ matches = self.regex.findall(text) if not matches: return None return matches[-1] # BigQuery table schema SCHEMA = [ bigquery.SchemaField('date', 'DATE'), bigquery.SchemaField('commit_sha1', 'STRING'), bigquery.SchemaField('job_id', 'INTEGER'), bigquery.SchemaField('rosbag', 'STRING'), bigquery.SchemaField('user_time_secs', 'FLOAT'), bigquery.SchemaField('system_time_secs', 'FLOAT'), bigquery.SchemaField('wall_time_secs', 'FLOAT'), bigquery.SchemaField('max_set_size_kbytes', 'INTEGER'), bigquery.SchemaField('constraints_count', 'INTEGER'), bigquery.SchemaField('constraints_score_minimum', 'FLOAT'), bigquery.SchemaField('constraints_score_maximum', 'FLOAT'), bigquery.SchemaField('constraints_score_mean', 'FLOAT') ] # Pattern matchers for the various fields of the '/usr/bin/time -v' output USER_TIME_PATTERN = Pattern( r'^\s*User time \(seconds\): (?P\d+.\d+|\d+)') SYSTEM_TIME_PATTERN = Pattern( r'^\s*System time \(seconds\): (?P\d+.\d+|\d+)') WALL_TIME_PATTERN = Pattern( r'^\s*Elapsed \(wall clock\) time \(h:mm:ss or m:ss\): ' r'((?P\d{1,2}):|)(?P\d{1,2}):(?P\d{2}\.\d{2})') MAX_RES_SET_SIZE_PATTERN = Pattern( r'^\s*Maximum resident set size \(kbytes\): (?P\d+)') CONSTRAINT_STATS_PATTERN = Pattern( r'Score histogram:[\n\r]+' r'Count:\s+(?P\d+)\s+' r'Min:\s+(?P\d+\.\d+)\s+' r'Max:\s+(?P\d+\.\d+)\s+' r'Mean:\s+(?P\d+\.\d+)') # Pattern matcher for extracting the HEAD commit SHA-1 hash. GIT_SHA1_PATTERN = Pattern(r'^(?P[0-9a-f]{40})\s+HEAD') def get_head_git_sha1(): """Returns the SHA-1 hash of the commit tagged HEAD.""" output = subprocess.check_output([ 'git', 'ls-remote', 'https://github.com/googlecartographer/cartographer.git' ]) parsed = GIT_SHA1_PATTERN.extract(output) return parsed['sha1'] def extract_stats(inp): """Returns a dictionary of stats.""" result = {} parsed = USER_TIME_PATTERN.extract(inp) result['user_time_secs'] = float(parsed['user_time']) parsed = SYSTEM_TIME_PATTERN.extract(inp) result['system_time_secs'] = float(parsed['system_time']) parsed = WALL_TIME_PATTERN.extract(inp) result['wall_time_secs'] = float(parsed['hours'] or 0.) * 3600 + float( parsed['minutes']) * 60 + float(parsed['seconds']) parsed = MAX_RES_SET_SIZE_PATTERN.extract(inp) result['max_set_size_kbytes'] = int(parsed['max_set_size']) parsed = CONSTRAINT_STATS_PATTERN.extract_last_occurence(inp) print parsed result['constraints_count'] = int(parsed[0]) result['constraints_score_min'] = float(parsed[1]) result['constraints_score_max'] = float(parsed[2]) result['constraints_score_mean'] = float(parsed[3]) return result def retrieve_entity(datastore_client, kind, identifier): """Convenience function for Datastore entity retrieval.""" key = datastore_client.key(kind, identifier) return datastore_client.get(key) def create_job_selector(worker_id, num_workers): """Constructs a round-robin job selector.""" return lambda job_id: job_id % num_workers == worker_id def run_cmd(cmd): """Runs command both printing its stdout output and returning it as string.""" p = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) run_cmd.output = [] def process(line): run_cmd.output.append(line) print line.rstrip() while p.poll() is None: process(p.stdout.readline()) process(p.stdout.read()) return '\n'.join(run_cmd.output) class Job(object): """Represents a single job to be executed. A job consists of a combination of rosbag and configuration and launch files. """ def __init__(self, datastore_client, job_id): self.id = job_id entity = retrieve_entity(datastore_client, 'Job', job_id) self.launch_file = entity['launch_file'] self.assets_writer_launch_file = entity['assets_writer_launch_file'] self.assets_writer_config_file = entity['assets_writer_config_file'] self.rosbag = entity['rosbag'] def __repr__(self): return 'Job: id : {} launch_file: {} rosbag: {}'.format( self.id, self.launch_file, self.rosbag) def run(self, ros_distro, run_id): """Runs the job with ROS distro 'ros_distro'.""" print 'running job {}'.format(self.id) # Copy the rosbag to scratch space scratch_dir = '/data/{}'.format(self.id) rosbag_filename = basename(self.rosbag) run_cmd('mkdir {}'.format(scratch_dir)) run_cmd('gsutil cp gs://{} {}/{}'.format(self.rosbag, scratch_dir, rosbag_filename)) # Creates pbstream output = run_cmd( '/bin/bash -c \"source /opt/ros/{}/setup.bash && source ' '/opt/cartographer_ros/setup.bash && /usr/bin/time -v roslaunch ' 'cartographer_ros {} bag_filenames:={}/{} no_rviz:=true\"'.format( ros_distro, self.launch_file, scratch_dir, rosbag_filename)) # Creates assets. run_cmd('/bin/bash -c \"source /opt/ros/{}/setup.bash && source ' '/opt/cartographer_ros/setup.bash && /usr/bin/time -v roslaunch ' 'cartographer_ros {} bag_filenames:={}/{} ' 'pose_graph_filename:={}/{}.pbstream config_file:={}\"'.format( ros_distro, self.assets_writer_launch_file, scratch_dir, rosbag_filename, scratch_dir, rosbag_filename, self.assets_writer_config_file)) # Copies assets to bucket. run_cmd('gsutil cp {}/{}.pbstream ' 'gs://cartographer-ci-artifacts/{}/{}/{}.pbstream'.format( scratch_dir, rosbag_filename, run_id, self.id, rosbag_filename)) run_cmd('gsutil cp {}/{}_* gs://cartographer-ci-artifacts/{}/{}/'.format( scratch_dir, rosbag_filename, run_id, self.id)) info = extract_stats(output) info['rosbag'] = rosbag_filename return info class Worker(object): """Represents a single worker that executes a sequence of Jobs.""" def __init__(self, datastore_client, pipeline_id, run_id): entity = retrieve_entity(datastore_client, 'PipelineConfig', pipeline_id) self.pipeline_id = pipeline_id self.jobs = [Job(datastore_client, job_id) for job_id in entity['jobs']] self.scratch_dir = entity['scratch_dir'] self.ros_distro = entity['ros_distro'] self.run_id = run_id def __repr__(self): result = 'Worker: pipeline_id: {}\n'.format(self.pipeline_id) for job in self.jobs: result += '{}\n'.format(str(job)) return result def run_jobs(self, selector): outputs = {} for idx, job in enumerate(self.jobs): if selector(idx): output = job.run(self.ros_distro, self.run_id) outputs[job.id] = output else: print 'job {}: skip'.format(job.id) return outputs def publish_stats_to_big_query(stats_dict, now, head_sha1): """Publishes metrics to BigQuery.""" bigquery_client = bigquery.Client() dataset = bigquery_client.dataset('Cartographer') table = dataset.table('metrics') rows_to_insert = [] for job_identifier, job_info in stats_dict.iteritems(): print job_info data = ('{}-{}-{}'.format( now.year, now.month, now.day), head_sha1, job_identifier, job_info['rosbag'], job_info['user_time_secs'], job_info['system_time_secs'], job_info['wall_time_secs'], job_info['max_set_size_kbytes'], job_info['constraints_count'], job_info['constraints_score_min'], job_info['constraints_score_max'], job_info['constraints_score_mean']) rows_to_insert.append(data) errors = bigquery_client.create_rows( table, rows_to_insert, selected_fields=SCHEMA) if not errors: print 'Pushed {} row(s) into Cartographer:metrics'.format( len(rows_to_insert)) else: print 'Errors:' pprint(errors) def parse_arguments(): """Parses the command line arguments.""" parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--worker_id', type=int) parser.add_argument('--num_workers', type=int) parser.add_argument('--pipeline_id', type=str) return parser.parse_args() def main(): args = parse_arguments() ds_client = datastore.Client() job_selector = create_job_selector(int(args.worker_id), int(args.num_workers)) head_sha1 = get_head_git_sha1() now = datetime.datetime.now() pipeline_run_id = '{}-{}-{}_{}'.format(now.year, now.month, now.day, head_sha1) worker = Worker(ds_client, args.pipeline_id, pipeline_run_id) stats_dict = worker.run_jobs(job_selector) publish_stats_to_big_query(stats_dict, now, head_sha1) if __name__ == '__main__': main()