cartographer/cartographer/mapping_3d/scan_matching/interpolated_grid.h

156 lines
6.3 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARTOGRAPHER_MAPPING_3D_SCAN_MATCHING_INTERPOLATED_GRID_H_
#define CARTOGRAPHER_MAPPING_3D_SCAN_MATCHING_INTERPOLATED_GRID_H_
#include <cmath>
#include "cartographer/mapping_3d/hybrid_grid.h"
namespace cartographer {
namespace mapping {
namespace scan_matching {
// Interpolates between HybridGrid probability voxels. We use the tricubic
// interpolation which interpolates the values and has vanishing derivative at
// these points.
//
// This class is templated to work with the autodiff that Ceres provides.
// For this reason, it is also important that the interpolation scheme be
// continuously differentiable.
class InterpolatedGrid {
public:
explicit InterpolatedGrid(const HybridGrid& hybrid_grid)
: hybrid_grid_(hybrid_grid) {}
InterpolatedGrid(const InterpolatedGrid&) = delete;
InterpolatedGrid& operator=(const InterpolatedGrid&) = delete;
// Returns the interpolated probability at (x, y, z) of the HybridGrid
// used to perform the interpolation.
//
// This is a piecewise, continuously differentiable function. We use the
// scalar part of Jet parameters to select our interval below. It is the
// tensor product volume of piecewise cubic polynomials that interpolate
// the values, and have vanishing derivative at the interval boundaries.
template <typename T>
T GetProbability(const T& x, const T& y, const T& z) const {
double x1, y1, z1, x2, y2, z2;
ComputeInterpolationDataPoints(x, y, z, &x1, &y1, &z1, &x2, &y2, &z2);
const Eigen::Array3i index1 =
hybrid_grid_.GetCellIndex(Eigen::Vector3f(x1, y1, z1));
const double q111 = hybrid_grid_.GetProbability(index1);
const double q112 =
hybrid_grid_.GetProbability(index1 + Eigen::Array3i(0, 0, 1));
const double q121 =
hybrid_grid_.GetProbability(index1 + Eigen::Array3i(0, 1, 0));
const double q122 =
hybrid_grid_.GetProbability(index1 + Eigen::Array3i(0, 1, 1));
const double q211 =
hybrid_grid_.GetProbability(index1 + Eigen::Array3i(1, 0, 0));
const double q212 =
hybrid_grid_.GetProbability(index1 + Eigen::Array3i(1, 0, 1));
const double q221 =
hybrid_grid_.GetProbability(index1 + Eigen::Array3i(1, 1, 0));
const double q222 =
hybrid_grid_.GetProbability(index1 + Eigen::Array3i(1, 1, 1));
const T normalized_x = (x - x1) / (x2 - x1);
const T normalized_y = (y - y1) / (y2 - y1);
const T normalized_z = (z - z1) / (z2 - z1);
// Compute pow(..., 2) and pow(..., 3). Using pow() here is very expensive.
const T normalized_xx = normalized_x * normalized_x;
const T normalized_xxx = normalized_x * normalized_xx;
const T normalized_yy = normalized_y * normalized_y;
const T normalized_yyy = normalized_y * normalized_yy;
const T normalized_zz = normalized_z * normalized_z;
const T normalized_zzz = normalized_z * normalized_zz;
// We first interpolate in z, then y, then x. All 7 times this uses the same
// scheme: A * (2t^3 - 3t^2 + 1) + B * (-2t^3 + 3t^2).
// The first polynomial is 1 at t=0, 0 at t=1, the second polynomial is 0
// at t=0, 1 at t=1. Both polynomials have derivative zero at t=0 and t=1.
const T q11 = (q111 - q112) * normalized_zzz * 2. +
(q112 - q111) * normalized_zz * 3. + q111;
const T q12 = (q121 - q122) * normalized_zzz * 2. +
(q122 - q121) * normalized_zz * 3. + q121;
const T q21 = (q211 - q212) * normalized_zzz * 2. +
(q212 - q211) * normalized_zz * 3. + q211;
const T q22 = (q221 - q222) * normalized_zzz * 2. +
(q222 - q221) * normalized_zz * 3. + q221;
const T q1 = (q11 - q12) * normalized_yyy * 2. +
(q12 - q11) * normalized_yy * 3. + q11;
const T q2 = (q21 - q22) * normalized_yyy * 2. +
(q22 - q21) * normalized_yy * 3. + q21;
return (q1 - q2) * normalized_xxx * 2. + (q2 - q1) * normalized_xx * 3. +
q1;
}
private:
template <typename T>
void ComputeInterpolationDataPoints(const T& x, const T& y, const T& z,
double* x1, double* y1, double* z1,
double* x2, double* y2,
double* z2) const {
const Eigen::Vector3f lower = CenterOfLowerVoxel(x, y, z);
*x1 = lower.x();
*y1 = lower.y();
*z1 = lower.z();
*x2 = lower.x() + hybrid_grid_.resolution();
*y2 = lower.y() + hybrid_grid_.resolution();
*z2 = lower.z() + hybrid_grid_.resolution();
}
// Center of the next lower voxel, i.e., not necessarily the voxel containing
// (x, y, z). For each dimension, the largest voxel index so that the
// corresponding center is at most the given coordinate.
Eigen::Vector3f CenterOfLowerVoxel(const double x, const double y,
const double z) const {
// Center of the cell containing (x, y, z).
Eigen::Vector3f center = hybrid_grid_.GetCenterOfCell(
hybrid_grid_.GetCellIndex(Eigen::Vector3f(x, y, z)));
// Move to the next lower voxel center.
if (center.x() > x) {
center.x() -= hybrid_grid_.resolution();
}
if (center.y() > y) {
center.y() -= hybrid_grid_.resolution();
}
if (center.z() > z) {
center.z() -= hybrid_grid_.resolution();
}
return center;
}
// Uses the scalar part of a Ceres Jet.
template <typename T>
Eigen::Vector3f CenterOfLowerVoxel(const T& jet_x, const T& jet_y,
const T& jet_z) const {
return CenterOfLowerVoxel(jet_x.a, jet_y.a, jet_z.a);
}
const HybridGrid& hybrid_grid_;
};
} // namespace scan_matching
} // namespace mapping
} // namespace cartographer
#endif // CARTOGRAPHER_MAPPING_3D_SCAN_MATCHING_INTERPOLATED_GRID_H_