cartographer/cartographer/mapping/internal/2d/normal_estimation_2d_test.cc

147 lines
5.4 KiB
C++

/*
* Copyright 2018 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cartographer/mapping/internal/2d/normal_estimation_2d.h"
#include "cartographer/common/lua_parameter_dictionary.h"
#include "cartographer/common/lua_parameter_dictionary_test_helpers.h"
#include "cartographer/common/math.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace cartographer {
namespace mapping {
namespace {
using ::testing::TestWithParam;
using ::testing::Values;
TEST(NormalEstimation2DTest, SinglePoint) {
const auto parameter_dictionary = common::MakeDictionary(
"return { "
"num_normal_samples = 2, "
"sample_radius = 10.0, "
"}");
const proto::NormalEstimationOptions2D options =
CreateNormalEstimationOptions2D(parameter_dictionary.get());
auto range_data = sensor::RangeData();
const size_t num_angles = 100;
range_data.origin.x() = 0.f;
range_data.origin.y() = 0.f;
for (size_t angle_idx = 0; angle_idx < num_angles; ++angle_idx) {
const double angle = static_cast<double>(angle_idx) /
static_cast<double>(num_angles) * 2. * M_PI -
M_PI;
range_data.returns.clear();
range_data.returns.push_back(
{Eigen::Vector3d{std::cos(angle), std::sin(angle), 0.}.cast<float>()});
std::vector<float> normals;
normals = EstimateNormals(range_data, options);
EXPECT_NEAR(common::NormalizeAngleDifference(angle - normals[0] - M_PI),
0.0, 2.0 * M_PI / num_angles + 1e-4);
}
}
TEST(NormalEstimation2DTest, StraightLineGeometry) {
const auto parameter_dictionary = common::MakeDictionary(
"return { "
"num_normal_samples = 2, "
"sample_radius = 10.0, "
"}");
const proto::NormalEstimationOptions2D options =
CreateNormalEstimationOptions2D(parameter_dictionary.get());
auto range_data = sensor::RangeData();
range_data.returns.push_back({Eigen::Vector3f{-1.f, 1.f, 0.f}});
range_data.returns.push_back({Eigen::Vector3f{0.f, 1.f, 0.f}});
range_data.returns.push_back({Eigen::Vector3f{1.f, 1.f, 0.f}});
range_data.origin.x() = 0.f;
range_data.origin.y() = 0.f;
std::vector<float> normals;
normals = EstimateNormals(range_data, options);
for (const float normal : normals) {
EXPECT_NEAR(normal, -M_PI_2, 1e-4);
}
normals.clear();
range_data.returns.clear();
range_data.returns.push_back({Eigen::Vector3f{1.f, 1.f, 0.f}});
range_data.returns.push_back({Eigen::Vector3f{1.f, 0.f, 0.f}});
range_data.returns.push_back({Eigen::Vector3f{1.f, -1.f, 0.f}});
normals = EstimateNormals(range_data, options);
for (const float normal : normals) {
EXPECT_NEAR(std::abs(normal), M_PI, 1e-4);
}
normals.clear();
range_data.returns.clear();
range_data.returns.push_back({Eigen::Vector3f{1.f, -1.f, 0.f}});
range_data.returns.push_back({Eigen::Vector3f{0.f, -1.f, 0.f}});
range_data.returns.push_back({Eigen::Vector3f{-1.f, -1.f, 0.f}});
normals = EstimateNormals(range_data, options);
for (const float normal : normals) {
EXPECT_NEAR(normal, M_PI_2, 1e-4);
}
normals.clear();
range_data.returns.clear();
range_data.returns.push_back({Eigen::Vector3f{-1.f, -1.f, 0.f}});
range_data.returns.push_back({Eigen::Vector3f{-1.f, 0.f, 0.f}});
range_data.returns.push_back({Eigen::Vector3f{-1.f, 1.f, 0.f}});
normals = EstimateNormals(range_data, options);
for (const float normal : normals) {
EXPECT_NEAR(normal, 0, 1e-4);
}
}
class CircularGeometry2DTest : public TestWithParam<int> {};
TEST_P(CircularGeometry2DTest, NumSamplesPerNormal) {
const auto parameter_dictionary = common::MakeDictionary(
"return { "
"num_normal_samples = " +
std::to_string(GetParam()) +
", "
"sample_radius = 10.0, "
"}");
const proto::NormalEstimationOptions2D options =
CreateNormalEstimationOptions2D(parameter_dictionary.get());
auto range_data = sensor::RangeData();
const size_t num_angles = 100;
for (size_t angle_idx = 0; angle_idx < num_angles; ++angle_idx) {
const double angle = static_cast<double>(angle_idx) /
static_cast<double>(num_angles) * 2. * M_PI -
M_PI;
range_data.returns.push_back(
{Eigen::Vector3d{std::cos(angle), std::sin(angle), 0.}.cast<float>()});
}
range_data.origin.x() = 0.f;
range_data.origin.y() = 0.f;
std::vector<float> normals;
normals = EstimateNormals(range_data, options);
for (size_t angle_idx = 0; angle_idx < num_angles; ++angle_idx) {
const double angle = static_cast<double>(angle_idx) /
static_cast<double>(num_angles) * 2. * M_PI;
EXPECT_NEAR(common::NormalizeAngleDifference(normals[angle_idx] - angle),
0.0, 2.0 * M_PI / num_angles * GetParam() / 2.0 + 1e-4);
}
}
INSTANTIATE_TEST_CASE_P(InstantiationName, CircularGeometry2DTest,
::testing::Values(1, 2, 4, 5, 8));
} // namespace
} // namespace mapping
} // namespace cartographer