cartographer/cartographer/mapping_2d/sparse_pose_graph/constraint_builder.cc

293 lines
11 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cartographer/mapping_2d/sparse_pose_graph/constraint_builder.h"
#include <cmath>
#include <functional>
#include <iomanip>
#include <iostream>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include "Eigen/Eigenvalues"
#include "cartographer/common/make_unique.h"
#include "cartographer/common/math.h"
#include "cartographer/common/thread_pool.h"
#include "cartographer/mapping_2d/scan_matching/proto/ceres_scan_matcher_options.pb.h"
#include "cartographer/mapping_2d/scan_matching/proto/fast_correlative_scan_matcher_options.pb.h"
#include "cartographer/transform/transform.h"
#include "glog/logging.h"
namespace cartographer {
namespace mapping_2d {
namespace sparse_pose_graph {
transform::Rigid2d ComputeSubmapPose(const Submap& submap) {
return transform::Project2D(submap.local_pose());
}
ConstraintBuilder::ConstraintBuilder(
const mapping::sparse_pose_graph::proto::ConstraintBuilderOptions& options,
common::ThreadPool* const thread_pool)
: options_(options),
thread_pool_(thread_pool),
sampler_(options.sampling_ratio()),
ceres_scan_matcher_(options.ceres_scan_matcher_options()) {}
ConstraintBuilder::~ConstraintBuilder() {
common::MutexLocker locker(&mutex_);
CHECK_EQ(constraints_.size(), 0) << "WhenDone() was not called";
CHECK_EQ(pending_computations_.size(), 0);
CHECK_EQ(submap_queued_work_items_.size(), 0);
CHECK(when_done_ == nullptr);
}
void ConstraintBuilder::MaybeAddConstraint(
const mapping::SubmapId& submap_id, const Submap* const submap,
const mapping::NodeId& node_id,
const mapping::TrajectoryNode::Data* const constant_data,
const transform::Rigid2d& initial_relative_pose) {
if (initial_relative_pose.translation().norm() >
options_.max_constraint_distance()) {
return;
}
if (sampler_.Pulse()) {
common::MutexLocker locker(&mutex_);
constraints_.emplace_back();
auto* const constraint = &constraints_.back();
++pending_computations_[current_computation_];
const int current_computation = current_computation_;
ScheduleSubmapScanMatcherConstructionAndQueueWorkItem(
submap_id, &submap->probability_grid(), [=]() EXCLUDES(mutex_) {
ComputeConstraint(submap_id, submap, node_id,
false, /* match_full_submap */
constant_data, initial_relative_pose, constraint);
FinishComputation(current_computation);
});
}
}
void ConstraintBuilder::MaybeAddGlobalConstraint(
const mapping::SubmapId& submap_id, const Submap* const submap,
const mapping::NodeId& node_id,
const mapping::TrajectoryNode::Data* const constant_data) {
common::MutexLocker locker(&mutex_);
constraints_.emplace_back();
auto* const constraint = &constraints_.back();
++pending_computations_[current_computation_];
const int current_computation = current_computation_;
ScheduleSubmapScanMatcherConstructionAndQueueWorkItem(
submap_id, &submap->probability_grid(), [=]() EXCLUDES(mutex_) {
ComputeConstraint(
submap_id, submap, node_id, true, /* match_full_submap */
constant_data, transform::Rigid2d::Identity(), constraint);
FinishComputation(current_computation);
});
}
void ConstraintBuilder::NotifyEndOfNode() {
common::MutexLocker locker(&mutex_);
++current_computation_;
}
void ConstraintBuilder::WhenDone(
const std::function<void(const ConstraintBuilder::Result&)>& callback) {
common::MutexLocker locker(&mutex_);
CHECK(when_done_ == nullptr);
when_done_ =
common::make_unique<std::function<void(const Result&)>>(callback);
++pending_computations_[current_computation_];
const int current_computation = current_computation_;
thread_pool_->Schedule(
[this, current_computation] { FinishComputation(current_computation); });
}
void ConstraintBuilder::ScheduleSubmapScanMatcherConstructionAndQueueWorkItem(
const mapping::SubmapId& submap_id, const ProbabilityGrid* const submap,
const std::function<void()>& work_item) {
if (submap_scan_matchers_[submap_id].fast_correlative_scan_matcher !=
nullptr) {
thread_pool_->Schedule(work_item);
} else {
submap_queued_work_items_[submap_id].push_back(work_item);
if (submap_queued_work_items_[submap_id].size() == 1) {
thread_pool_->Schedule(
[=]() { ConstructSubmapScanMatcher(submap_id, submap); });
}
}
}
void ConstraintBuilder::ConstructSubmapScanMatcher(
const mapping::SubmapId& submap_id, const ProbabilityGrid* const submap) {
auto submap_scan_matcher =
common::make_unique<scan_matching::FastCorrelativeScanMatcher>(
*submap, options_.fast_correlative_scan_matcher_options());
common::MutexLocker locker(&mutex_);
submap_scan_matchers_[submap_id] = {submap, std::move(submap_scan_matcher)};
for (const std::function<void()>& work_item :
submap_queued_work_items_[submap_id]) {
thread_pool_->Schedule(work_item);
}
submap_queued_work_items_.erase(submap_id);
}
const ConstraintBuilder::SubmapScanMatcher*
ConstraintBuilder::GetSubmapScanMatcher(const mapping::SubmapId& submap_id) {
common::MutexLocker locker(&mutex_);
const SubmapScanMatcher* submap_scan_matcher =
&submap_scan_matchers_[submap_id];
CHECK(submap_scan_matcher->fast_correlative_scan_matcher != nullptr);
return submap_scan_matcher;
}
void ConstraintBuilder::ComputeConstraint(
const mapping::SubmapId& submap_id, const Submap* const submap,
const mapping::NodeId& node_id, bool match_full_submap,
const mapping::TrajectoryNode::Data* const constant_data,
const transform::Rigid2d& initial_relative_pose,
std::unique_ptr<ConstraintBuilder::Constraint>* constraint) {
const transform::Rigid2d initial_pose =
ComputeSubmapPose(*submap) * initial_relative_pose;
const SubmapScanMatcher* const submap_scan_matcher =
GetSubmapScanMatcher(submap_id);
// The 'constraint_transform' (submap i <- node j) is computed from:
// - a 'filtered_gravity_aligned_point_cloud' in node j,
// - the initial guess 'initial_pose' for (map <- node j),
// - the result 'pose_estimate' of Match() (map <- node j).
// - the ComputeSubmapPose() (map <- submap i)
float score = 0.;
transform::Rigid2d pose_estimate = transform::Rigid2d::Identity();
// Compute 'pose_estimate' in three stages:
// 1. Fast estimate using the fast correlative scan matcher.
// 2. Prune if the score is too low.
// 3. Refine.
if (match_full_submap) {
if (submap_scan_matcher->fast_correlative_scan_matcher->MatchFullSubmap(
constant_data->filtered_gravity_aligned_point_cloud,
options_.global_localization_min_score(), &score, &pose_estimate)) {
CHECK_GT(score, options_.global_localization_min_score());
CHECK_GE(node_id.trajectory_id, 0);
CHECK_GE(submap_id.trajectory_id, 0);
} else {
return;
}
} else {
if (submap_scan_matcher->fast_correlative_scan_matcher->Match(
initial_pose, constant_data->filtered_gravity_aligned_point_cloud,
options_.min_score(), &score, &pose_estimate)) {
// We've reported a successful local match.
CHECK_GT(score, options_.min_score());
} else {
return;
}
}
{
common::MutexLocker locker(&mutex_);
score_histogram_.Add(score);
}
// Use the CSM estimate as both the initial and previous pose. This has the
// effect that, in the absence of better information, we prefer the original
// CSM estimate.
ceres::Solver::Summary unused_summary;
ceres_scan_matcher_.Match(pose_estimate, pose_estimate,
constant_data->filtered_gravity_aligned_point_cloud,
*submap_scan_matcher->probability_grid,
&pose_estimate, &unused_summary);
const transform::Rigid2d constraint_transform =
ComputeSubmapPose(*submap).inverse() * pose_estimate;
constraint->reset(new Constraint{submap_id,
node_id,
{transform::Embed3D(constraint_transform),
options_.loop_closure_translation_weight(),
options_.loop_closure_rotation_weight()},
Constraint::INTER_SUBMAP});
if (options_.log_matches()) {
std::ostringstream info;
info << "Node " << node_id << " with "
<< constant_data->filtered_gravity_aligned_point_cloud.size()
<< " points on submap " << submap_id << std::fixed;
if (match_full_submap) {
info << " matches";
} else {
const transform::Rigid2d difference =
initial_pose.inverse() * pose_estimate;
info << " differs by translation " << std::setprecision(2)
<< difference.translation().norm() << " rotation "
<< std::setprecision(3) << std::abs(difference.normalized_angle());
}
info << " with score " << std::setprecision(1) << 100. * score << "%.";
LOG(INFO) << info.str();
}
}
void ConstraintBuilder::FinishComputation(const int computation_index) {
Result result;
std::unique_ptr<std::function<void(const Result&)>> callback;
{
common::MutexLocker locker(&mutex_);
if (--pending_computations_[computation_index] == 0) {
pending_computations_.erase(computation_index);
}
if (pending_computations_.empty()) {
CHECK_EQ(submap_queued_work_items_.size(), 0);
if (when_done_ != nullptr) {
for (const std::unique_ptr<Constraint>& constraint : constraints_) {
if (constraint != nullptr) {
result.push_back(*constraint);
}
}
if (options_.log_matches()) {
LOG(INFO) << constraints_.size() << " computations resulted in "
<< result.size() << " additional constraints.";
LOG(INFO) << "Score histogram:\n" << score_histogram_.ToString(10);
}
constraints_.clear();
callback = std::move(when_done_);
when_done_.reset();
}
}
}
if (callback != nullptr) {
(*callback)(result);
}
}
int ConstraintBuilder::GetNumFinishedNodes() {
common::MutexLocker locker(&mutex_);
if (pending_computations_.empty()) {
return current_computation_;
}
return pending_computations_.begin()->first;
}
void ConstraintBuilder::DeleteScanMatcher(const mapping::SubmapId& submap_id) {
common::MutexLocker locker(&mutex_);
CHECK(pending_computations_.empty());
submap_scan_matchers_.erase(submap_id);
}
} // namespace sparse_pose_graph
} // namespace mapping_2d
} // namespace cartographer