219 lines
8.2 KiB
C++
219 lines
8.2 KiB
C++
/*
|
|
* Copyright 2016 The Cartographer Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "cartographer/mapping_2d/sparse_pose_graph/optimization_problem.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "cartographer/common/ceres_solver_options.h"
|
|
#include "cartographer/common/histogram.h"
|
|
#include "cartographer/common/math.h"
|
|
#include "cartographer/mapping_2d/sparse_pose_graph/spa_cost_function.h"
|
|
#include "cartographer/transform/transform.h"
|
|
#include "ceres/ceres.h"
|
|
#include "glog/logging.h"
|
|
|
|
namespace cartographer {
|
|
namespace mapping_2d {
|
|
namespace sparse_pose_graph {
|
|
|
|
namespace {
|
|
|
|
// Converts a pose into the 3 optimization variable format used for Ceres:
|
|
// translation in x and y, followed by the rotation angle representing the
|
|
// orientation.
|
|
std::array<double, 3> FromPose(const transform::Rigid2d& pose) {
|
|
return {{pose.translation().x(), pose.translation().y(),
|
|
pose.normalized_angle()}};
|
|
}
|
|
|
|
// Converts a pose as represented for Ceres back to an transform::Rigid2d pose.
|
|
transform::Rigid2d ToPose(const std::array<double, 3>& values) {
|
|
return transform::Rigid2d({values[0], values[1]}, values[2]);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
OptimizationProblem::OptimizationProblem(
|
|
const mapping::sparse_pose_graph::proto::OptimizationProblemOptions&
|
|
options)
|
|
: options_(options) {}
|
|
|
|
OptimizationProblem::~OptimizationProblem() {}
|
|
|
|
void OptimizationProblem::AddImuData(const int trajectory_id,
|
|
const common::Time time,
|
|
const Eigen::Vector3d& linear_acceleration,
|
|
const Eigen::Vector3d& angular_velocity) {
|
|
CHECK_GE(trajectory_id, 0);
|
|
imu_data_.resize(
|
|
std::max(submap_data_.size(), static_cast<size_t>(trajectory_id) + 1));
|
|
imu_data_[trajectory_id].push_back(
|
|
mapping_3d::ImuData{time, linear_acceleration, angular_velocity});
|
|
}
|
|
|
|
void OptimizationProblem::AddTrajectoryNode(
|
|
const int trajectory_id, const common::Time time,
|
|
const transform::Rigid2d& initial_point_cloud_pose,
|
|
const transform::Rigid2d& point_cloud_pose) {
|
|
node_data_.push_back(NodeData{trajectory_id, time, initial_point_cloud_pose,
|
|
point_cloud_pose});
|
|
}
|
|
|
|
void OptimizationProblem::AddSubmap(const int trajectory_id,
|
|
const transform::Rigid2d& submap_pose) {
|
|
CHECK_GE(trajectory_id, 0);
|
|
submap_data_.resize(
|
|
std::max(submap_data_.size(), static_cast<size_t>(trajectory_id) + 1));
|
|
submap_data_[trajectory_id].push_back(SubmapData{submap_pose});
|
|
}
|
|
|
|
void OptimizationProblem::SetMaxNumIterations(const int32 max_num_iterations) {
|
|
options_.mutable_ceres_solver_options()->set_max_num_iterations(
|
|
max_num_iterations);
|
|
}
|
|
|
|
void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
|
|
if (node_data_.empty()) {
|
|
// Nothing to optimize.
|
|
return;
|
|
}
|
|
|
|
ceres::Problem::Options problem_options;
|
|
ceres::Problem problem(problem_options);
|
|
|
|
// Set the starting point.
|
|
// TODO(hrapp): Move ceres data into SubmapData.
|
|
std::vector<std::deque<std::array<double, 3>>> C_submaps(submap_data_.size());
|
|
std::vector<std::array<double, 3>> C_point_clouds(node_data_.size());
|
|
for (size_t trajectory_id = 0; trajectory_id != submap_data_.size();
|
|
++trajectory_id) {
|
|
for (size_t submap_index = 0;
|
|
submap_index != submap_data_[trajectory_id].size(); ++submap_index) {
|
|
if (trajectory_id == 0 && submap_index == 0) {
|
|
// Fix the pose of the first submap of the first trajectory.
|
|
C_submaps[trajectory_id].push_back(
|
|
FromPose(transform::Rigid2d::Identity()));
|
|
problem.AddParameterBlock(C_submaps[trajectory_id].back().data(), 3);
|
|
problem.SetParameterBlockConstant(
|
|
C_submaps[trajectory_id].back().data());
|
|
} else {
|
|
C_submaps[trajectory_id].push_back(
|
|
FromPose(submap_data_[trajectory_id][submap_index].pose));
|
|
problem.AddParameterBlock(C_submaps[trajectory_id].back().data(), 3);
|
|
}
|
|
}
|
|
}
|
|
for (size_t j = 0; j != node_data_.size(); ++j) {
|
|
C_point_clouds[j] = FromPose(node_data_[j].point_cloud_pose);
|
|
problem.AddParameterBlock(C_point_clouds[j].data(), 3);
|
|
}
|
|
|
|
// Add cost functions for intra- and inter-submap constraints.
|
|
for (const Constraint& constraint : constraints) {
|
|
CHECK_GE(constraint.j, 0);
|
|
CHECK_LT(constraint.j, node_data_.size());
|
|
problem.AddResidualBlock(
|
|
new ceres::AutoDiffCostFunction<SpaCostFunction, 3, 3, 3>(
|
|
new SpaCostFunction(constraint.pose)),
|
|
// Only loop closure constraints should have a loss function.
|
|
constraint.tag == Constraint::INTER_SUBMAP
|
|
? new ceres::HuberLoss(options_.huber_scale())
|
|
: nullptr,
|
|
C_submaps.at(constraint.submap_id.trajectory_id)
|
|
.at(constraint.submap_id.submap_index)
|
|
.data(),
|
|
C_point_clouds[constraint.j].data());
|
|
}
|
|
|
|
// Add penalties for changes between consecutive scans.
|
|
const Eigen::DiagonalMatrix<double, 3> consecutive_pose_change_penalty_matrix(
|
|
options_.consecutive_scan_translation_penalty_factor(),
|
|
options_.consecutive_scan_translation_penalty_factor(),
|
|
options_.consecutive_scan_rotation_penalty_factor());
|
|
|
|
// The poses in 'node_data_' are interleaved from multiple trajectories
|
|
// (although the points from a given trajectory are in time order).
|
|
// 'last_pose_indices[trajectory_id]' is the index of the most-recent pose on
|
|
// 'trajectory_id'.
|
|
std::map<int, int> last_pose_indices;
|
|
|
|
for (size_t j = 0; j != node_data_.size(); ++j) {
|
|
const int trajectory_id = node_data_[j].trajectory_id;
|
|
// This pose has a predecessor.
|
|
if (last_pose_indices.count(trajectory_id) != 0) {
|
|
const int last_pose_index = last_pose_indices[trajectory_id];
|
|
constexpr double kUnusedPositionPenalty = 1.;
|
|
constexpr double kUnusedOrientationPenalty = 1.;
|
|
problem.AddResidualBlock(
|
|
new ceres::AutoDiffCostFunction<SpaCostFunction, 3, 3, 3>(
|
|
new SpaCostFunction(Constraint::Pose{
|
|
transform::Embed3D(node_data_[last_pose_index]
|
|
.initial_point_cloud_pose.inverse() *
|
|
node_data_[j].initial_point_cloud_pose),
|
|
kalman_filter::Embed3D(consecutive_pose_change_penalty_matrix,
|
|
kUnusedPositionPenalty,
|
|
kUnusedOrientationPenalty)})),
|
|
nullptr /* loss function */, C_point_clouds[last_pose_index].data(),
|
|
C_point_clouds[j].data());
|
|
}
|
|
last_pose_indices[trajectory_id] = j;
|
|
}
|
|
|
|
// Solve.
|
|
ceres::Solver::Summary summary;
|
|
ceres::Solve(
|
|
common::CreateCeresSolverOptions(options_.ceres_solver_options()),
|
|
&problem, &summary);
|
|
|
|
if (options_.log_solver_summary()) {
|
|
LOG(INFO) << summary.FullReport();
|
|
}
|
|
|
|
// Store the result.
|
|
for (size_t trajectory_id = 0; trajectory_id != submap_data_.size();
|
|
++trajectory_id) {
|
|
for (size_t submap_index = 0;
|
|
submap_index != submap_data_[trajectory_id].size(); ++submap_index) {
|
|
submap_data_[trajectory_id][submap_index].pose =
|
|
ToPose(C_submaps[trajectory_id][submap_index]);
|
|
}
|
|
}
|
|
|
|
for (size_t j = 0; j != node_data_.size(); ++j) {
|
|
node_data_[j].point_cloud_pose = ToPose(C_point_clouds[j]);
|
|
}
|
|
}
|
|
|
|
const std::vector<NodeData>& OptimizationProblem::node_data() const {
|
|
return node_data_;
|
|
}
|
|
|
|
const std::vector<std::vector<SubmapData>>& OptimizationProblem::submap_data()
|
|
const {
|
|
return submap_data_;
|
|
}
|
|
|
|
} // namespace sparse_pose_graph
|
|
} // namespace mapping_2d
|
|
} // namespace cartographer
|