cartographer/cartographer/sensor/compressed_point_cloud.cc

196 lines
6.6 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cartographer/sensor/compressed_point_cloud.h"
#include <limits>
#include "cartographer/common/math.h"
#include "cartographer/mapping/3d/hybrid_grid.h"
namespace cartographer {
namespace sensor {
namespace {
// Points are encoded on a fixed grid with a grid spacing of 'kPrecision' with
// integers. Points are organized in blocks, where each point is encoded
// relative to the block's origin in an int32 with 'kBitsPerCoordinate' bits per
// coordinate.
constexpr float kPrecision = 0.001f; // in meters.
constexpr int kBitsPerCoordinate = 10;
constexpr int kCoordinateMask = (1 << kBitsPerCoordinate) - 1;
constexpr int kMaxBitsPerDirection = 23;
} // namespace
CompressedPointCloud::ConstIterator::ConstIterator(
const CompressedPointCloud* compressed_point_cloud)
: compressed_point_cloud_(compressed_point_cloud),
remaining_points_(compressed_point_cloud->num_points_),
remaining_points_in_current_block_(0),
input_(compressed_point_cloud->point_data_.begin()) {
if (remaining_points_ > 0) {
ReadNextPoint();
}
}
CompressedPointCloud::ConstIterator
CompressedPointCloud::ConstIterator::EndIterator(
const CompressedPointCloud* compressed_point_cloud) {
ConstIterator end_iterator(compressed_point_cloud);
end_iterator.remaining_points_ = 0;
return end_iterator;
}
Eigen::Vector3f CompressedPointCloud::ConstIterator::operator*() const {
CHECK_GT(remaining_points_, 0);
return current_point_;
}
CompressedPointCloud::ConstIterator& CompressedPointCloud::ConstIterator::
operator++() {
--remaining_points_;
if (remaining_points_ > 0) {
ReadNextPoint();
}
return *this;
}
bool CompressedPointCloud::ConstIterator::operator!=(
const ConstIterator& it) const {
CHECK(compressed_point_cloud_ == it.compressed_point_cloud_);
return remaining_points_ != it.remaining_points_;
}
void CompressedPointCloud::ConstIterator::ReadNextPoint() {
if (remaining_points_in_current_block_ == 0) {
remaining_points_in_current_block_ = *input_++;
for (int i = 0; i < 3; ++i) {
current_block_coordinates_[i] = *input_++ << kBitsPerCoordinate;
}
}
--remaining_points_in_current_block_;
const int point = *input_++;
constexpr int kMask = (1 << kBitsPerCoordinate) - 1;
current_point_[0] =
(current_block_coordinates_[0] + (point & kMask)) * kPrecision;
current_point_[1] = (current_block_coordinates_[1] +
((point >> kBitsPerCoordinate) & kMask)) *
kPrecision;
current_point_[2] =
(current_block_coordinates_[2] + (point >> (2 * kBitsPerCoordinate))) *
kPrecision;
}
CompressedPointCloud::CompressedPointCloud(const PointCloud& point_cloud)
: num_points_(point_cloud.size()) {
// Distribute points into blocks.
struct RasterPoint {
Eigen::Array3i point;
int index;
};
using Blocks = mapping::HybridGridBase<std::vector<RasterPoint>>;
Blocks blocks(kPrecision);
int num_blocks = 0;
CHECK_LE(point_cloud.size(), std::numeric_limits<int>::max());
for (int point_index = 0; point_index < static_cast<int>(point_cloud.size());
++point_index) {
const Eigen::Vector3f& point = point_cloud[point_index];
CHECK_LT(point.cwiseAbs().maxCoeff() / kPrecision,
1 << kMaxBitsPerDirection)
<< "Point out of bounds: " << point;
Eigen::Array3i raster_point;
Eigen::Array3i block_coordinate;
for (int i = 0; i < 3; ++i) {
raster_point[i] = common::RoundToInt(point[i] / kPrecision);
block_coordinate[i] = raster_point[i] >> kBitsPerCoordinate;
raster_point[i] &= kCoordinateMask;
}
auto* const block = blocks.mutable_value(block_coordinate);
num_blocks += block->empty();
block->push_back({raster_point, point_index});
}
// Encode blocks.
point_data_.reserve(4 * num_blocks + point_cloud.size());
for (Blocks::Iterator it(blocks); !it.Done(); it.Next(), --num_blocks) {
const auto& raster_points = it.GetValue();
CHECK_LE(raster_points.size(), std::numeric_limits<int32>::max());
point_data_.push_back(raster_points.size());
const Eigen::Array3i block_coordinate = it.GetCellIndex();
point_data_.push_back(block_coordinate.x());
point_data_.push_back(block_coordinate.y());
point_data_.push_back(block_coordinate.z());
for (const RasterPoint& raster_point : raster_points) {
point_data_.push_back((((raster_point.point.z() << kBitsPerCoordinate) +
raster_point.point.y())
<< kBitsPerCoordinate) +
raster_point.point.x());
}
}
CHECK_EQ(num_blocks, 0);
}
CompressedPointCloud::CompressedPointCloud(
const proto::CompressedPointCloud& proto) {
num_points_ = proto.num_points();
const int data_size = proto.point_data_size();
point_data_.reserve(data_size);
// TODO(wohe): Verify that 'point_data_' does not contain malformed data.
for (int i = 0; i != data_size; ++i) {
point_data_.emplace_back(proto.point_data(i));
}
}
bool CompressedPointCloud::empty() const { return num_points_ == 0; }
size_t CompressedPointCloud::size() const { return num_points_; }
CompressedPointCloud::ConstIterator CompressedPointCloud::begin() const {
return ConstIterator(this);
}
CompressedPointCloud::ConstIterator CompressedPointCloud::end() const {
return ConstIterator::EndIterator(this);
}
PointCloud CompressedPointCloud::Decompress() const {
PointCloud decompressed;
for (const Eigen::Vector3f& point : *this) {
decompressed.push_back(point);
}
return decompressed;
}
bool sensor::CompressedPointCloud::operator==(
const sensor::CompressedPointCloud& right_hand_container) const {
return point_data_ == right_hand_container.point_data_ &&
num_points_ == right_hand_container.num_points_;
}
proto::CompressedPointCloud CompressedPointCloud::ToProto() const {
proto::CompressedPointCloud result;
result.set_num_points(num_points_);
for (const int32 data : point_data_) {
result.add_point_data(data);
}
return result;
}
} // namespace sensor
} // namespace cartographer