273 lines
10 KiB
C++
273 lines
10 KiB
C++
/*
|
|
* Copyright 2016 The Cartographer Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "cartographer/mapping_2d/sparse_pose_graph.h"
|
|
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <random>
|
|
|
|
#include "cartographer/common/lua_parameter_dictionary_test_helpers.h"
|
|
#include "cartographer/common/make_unique.h"
|
|
#include "cartographer/common/thread_pool.h"
|
|
#include "cartographer/common/time.h"
|
|
#include "cartographer/mapping_2d/range_data_inserter.h"
|
|
#include "cartographer/mapping_2d/submaps.h"
|
|
#include "cartographer/transform/rigid_transform.h"
|
|
#include "cartographer/transform/rigid_transform_test_helpers.h"
|
|
#include "cartographer/transform/transform.h"
|
|
#include "gmock/gmock.h"
|
|
|
|
namespace cartographer {
|
|
namespace mapping_2d {
|
|
namespace {
|
|
|
|
class SparsePoseGraphTest : public ::testing::Test {
|
|
protected:
|
|
SparsePoseGraphTest() : thread_pool_(1) {
|
|
// Builds a wavy, irregularly circular point cloud that is unique
|
|
// rotationally. This gives us good rotational texture and avoids any
|
|
// possibility of the CeresScanMatcher preferring free space (>
|
|
// kMinProbability) to unknown space (== kMinProbability).
|
|
for (float t = 0.f; t < 2.f * M_PI; t += 0.005f) {
|
|
const float r = (std::sin(20.f * t) + 2.f) * std::sin(t + 2.f);
|
|
point_cloud_.emplace_back(r * std::sin(t), r * std::cos(t), 0.f);
|
|
}
|
|
|
|
{
|
|
auto parameter_dictionary = common::MakeDictionary(R"text(
|
|
return {
|
|
resolution = 0.05,
|
|
half_length = 21.,
|
|
num_range_data = 1,
|
|
output_debug_images = false,
|
|
range_data_inserter = {
|
|
insert_free_space = true,
|
|
hit_probability = 0.53,
|
|
miss_probability = 0.495,
|
|
},
|
|
})text");
|
|
submaps_ = common::make_unique<Submaps>(
|
|
CreateSubmapsOptions(parameter_dictionary.get()));
|
|
}
|
|
|
|
{
|
|
auto parameter_dictionary = common::MakeDictionary(R"text(
|
|
return {
|
|
optimize_every_n_scans = 1000,
|
|
constraint_builder = {
|
|
sampling_ratio = 1.,
|
|
max_constraint_distance = 6.,
|
|
adaptive_voxel_filter = {
|
|
max_length = 1e-2,
|
|
min_num_points = 1000,
|
|
max_range = 50.,
|
|
},
|
|
min_score = 0.5,
|
|
global_localization_min_score = 0.6,
|
|
loop_closure_translation_weight = 1.,
|
|
loop_closure_rotation_weight = 1.,
|
|
log_matches = true,
|
|
fast_correlative_scan_matcher = {
|
|
linear_search_window = 3.,
|
|
angular_search_window = 0.1,
|
|
branch_and_bound_depth = 3,
|
|
},
|
|
ceres_scan_matcher = {
|
|
occupied_space_weight = 20.,
|
|
translation_weight = 10.,
|
|
rotation_weight = 1.,
|
|
ceres_solver_options = {
|
|
use_nonmonotonic_steps = true,
|
|
max_num_iterations = 50,
|
|
num_threads = 1,
|
|
},
|
|
},
|
|
fast_correlative_scan_matcher_3d = {
|
|
branch_and_bound_depth = 3,
|
|
full_resolution_depth = 3,
|
|
rotational_histogram_size = 30,
|
|
min_rotational_score = 0.1,
|
|
linear_xy_search_window = 4.,
|
|
linear_z_search_window = 4.,
|
|
angular_search_window = 0.1,
|
|
},
|
|
ceres_scan_matcher_3d = {
|
|
occupied_space_weight_0 = 20.,
|
|
translation_weight = 10.,
|
|
rotation_weight = 1.,
|
|
only_optimize_yaw = true,
|
|
ceres_solver_options = {
|
|
use_nonmonotonic_steps = true,
|
|
max_num_iterations = 50,
|
|
num_threads = 1,
|
|
},
|
|
},
|
|
},
|
|
matcher_translation_weight = 1.,
|
|
matcher_rotation_weight = 1.,
|
|
optimization_problem = {
|
|
acceleration_weight = 1.,
|
|
rotation_weight = 1e2,
|
|
huber_scale = 1.,
|
|
consecutive_scan_translation_penalty_factor = 0.,
|
|
consecutive_scan_rotation_penalty_factor = 0.,
|
|
log_solver_summary = true,
|
|
ceres_solver_options = {
|
|
use_nonmonotonic_steps = false,
|
|
max_num_iterations = 200,
|
|
num_threads = 1,
|
|
},
|
|
},
|
|
max_num_final_iterations = 200,
|
|
global_sampling_ratio = 0.01,
|
|
})text");
|
|
sparse_pose_graph_ = common::make_unique<SparsePoseGraph>(
|
|
mapping::CreateSparsePoseGraphOptions(parameter_dictionary.get()),
|
|
&thread_pool_);
|
|
}
|
|
|
|
current_pose_ = transform::Rigid2d::Identity();
|
|
}
|
|
|
|
void MoveRelativeWithNoise(const transform::Rigid2d& movement,
|
|
const transform::Rigid2d& noise) {
|
|
current_pose_ = current_pose_ * movement;
|
|
const sensor::PointCloud new_point_cloud = sensor::TransformPointCloud(
|
|
point_cloud_,
|
|
transform::Embed3D(current_pose_.inverse().cast<float>()));
|
|
const mapping::Submap* const matching_submap =
|
|
submaps_->Get(submaps_->matching_index());
|
|
std::vector<const mapping::Submap*> insertion_submaps;
|
|
for (int insertion_index : submaps_->insertion_indices()) {
|
|
insertion_submaps.push_back(submaps_->Get(insertion_index));
|
|
}
|
|
const sensor::RangeData range_data{
|
|
Eigen::Vector3f::Zero(), new_point_cloud, {}};
|
|
const transform::Rigid2d pose_estimate = noise * current_pose_;
|
|
constexpr int kTrajectoryId = 0;
|
|
submaps_->InsertRangeData(TransformRangeData(
|
|
range_data, transform::Embed3D(pose_estimate.cast<float>())));
|
|
sparse_pose_graph_->AddScan(
|
|
common::FromUniversal(0), transform::Rigid3d::Identity(), range_data,
|
|
pose_estimate, kTrajectoryId, matching_submap, insertion_submaps);
|
|
}
|
|
|
|
void MoveRelative(const transform::Rigid2d& movement) {
|
|
MoveRelativeWithNoise(movement, transform::Rigid2d::Identity());
|
|
}
|
|
|
|
sensor::PointCloud point_cloud_;
|
|
std::unique_ptr<Submaps> submaps_;
|
|
common::ThreadPool thread_pool_;
|
|
std::unique_ptr<SparsePoseGraph> sparse_pose_graph_;
|
|
transform::Rigid2d current_pose_;
|
|
};
|
|
|
|
TEST_F(SparsePoseGraphTest, EmptyMap) {
|
|
sparse_pose_graph_->RunFinalOptimization();
|
|
const auto nodes = sparse_pose_graph_->GetTrajectoryNodes();
|
|
EXPECT_THAT(nodes.size(), ::testing::Eq(0));
|
|
}
|
|
|
|
TEST_F(SparsePoseGraphTest, NoMovement) {
|
|
MoveRelative(transform::Rigid2d::Identity());
|
|
MoveRelative(transform::Rigid2d::Identity());
|
|
MoveRelative(transform::Rigid2d::Identity());
|
|
sparse_pose_graph_->RunFinalOptimization();
|
|
const auto nodes = sparse_pose_graph_->GetTrajectoryNodes();
|
|
ASSERT_THAT(nodes.size(), ::testing::Eq(1));
|
|
EXPECT_THAT(nodes[0].size(), ::testing::Eq(3));
|
|
EXPECT_THAT(nodes[0][0].pose,
|
|
transform::IsNearly(transform::Rigid3d::Identity(), 1e-2));
|
|
EXPECT_THAT(nodes[0][1].pose,
|
|
transform::IsNearly(transform::Rigid3d::Identity(), 1e-2));
|
|
EXPECT_THAT(nodes[0][2].pose,
|
|
transform::IsNearly(transform::Rigid3d::Identity(), 1e-2));
|
|
}
|
|
|
|
TEST_F(SparsePoseGraphTest, NoOverlappingScans) {
|
|
std::mt19937 rng(0);
|
|
std::uniform_real_distribution<double> distribution(-1., 1.);
|
|
std::vector<transform::Rigid2d> poses;
|
|
for (int i = 0; i != 4; ++i) {
|
|
MoveRelative(transform::Rigid2d({0.25 * distribution(rng), 5.}, 0.));
|
|
poses.emplace_back(current_pose_);
|
|
}
|
|
sparse_pose_graph_->RunFinalOptimization();
|
|
const auto nodes = sparse_pose_graph_->GetTrajectoryNodes();
|
|
ASSERT_THAT(nodes.size(), ::testing::Eq(1));
|
|
for (int i = 0; i != 4; ++i) {
|
|
EXPECT_THAT(poses[i],
|
|
IsNearly(transform::Project2D(nodes[0][i].pose), 1e-2))
|
|
<< i;
|
|
}
|
|
}
|
|
|
|
TEST_F(SparsePoseGraphTest, ConsecutivelyOverlappingScans) {
|
|
std::mt19937 rng(0);
|
|
std::uniform_real_distribution<double> distribution(-1., 1.);
|
|
std::vector<transform::Rigid2d> poses;
|
|
for (int i = 0; i != 5; ++i) {
|
|
MoveRelative(transform::Rigid2d({0.25 * distribution(rng), 2.}, 0.));
|
|
poses.emplace_back(current_pose_);
|
|
}
|
|
sparse_pose_graph_->RunFinalOptimization();
|
|
const auto nodes = sparse_pose_graph_->GetTrajectoryNodes();
|
|
ASSERT_THAT(nodes.size(), ::testing::Eq(1));
|
|
for (int i = 0; i != 5; ++i) {
|
|
EXPECT_THAT(poses[i],
|
|
IsNearly(transform::Project2D(nodes[0][i].pose), 1e-2))
|
|
<< i;
|
|
}
|
|
}
|
|
|
|
TEST_F(SparsePoseGraphTest, OverlappingScans) {
|
|
std::mt19937 rng(0);
|
|
std::uniform_real_distribution<double> distribution(-1., 1.);
|
|
std::vector<transform::Rigid2d> ground_truth;
|
|
std::vector<transform::Rigid2d> poses;
|
|
for (int i = 0; i != 5; ++i) {
|
|
const double noise_x = 0.1 * distribution(rng);
|
|
const double noise_y = 0.1 * distribution(rng);
|
|
const double noise_orientation = 0.1 * distribution(rng);
|
|
transform::Rigid2d noise({noise_x, noise_y}, noise_orientation);
|
|
MoveRelativeWithNoise(
|
|
transform::Rigid2d({0.15 * distribution(rng), 0.4}, 0.), noise);
|
|
ground_truth.emplace_back(current_pose_);
|
|
poses.emplace_back(noise * current_pose_);
|
|
}
|
|
sparse_pose_graph_->RunFinalOptimization();
|
|
const auto nodes = sparse_pose_graph_->GetTrajectoryNodes();
|
|
ASSERT_THAT(nodes.size(), ::testing::Eq(1));
|
|
transform::Rigid2d true_movement =
|
|
ground_truth.front().inverse() * ground_truth.back();
|
|
transform::Rigid2d movement_before = poses.front().inverse() * poses.back();
|
|
transform::Rigid2d error_before = movement_before.inverse() * true_movement;
|
|
transform::Rigid3d optimized_movement =
|
|
nodes[0].front().pose.inverse() * nodes[0].back().pose;
|
|
transform::Rigid2d optimized_error =
|
|
transform::Project2D(optimized_movement).inverse() * true_movement;
|
|
EXPECT_THAT(std::abs(optimized_error.normalized_angle()),
|
|
::testing::Lt(std::abs(error_before.normalized_angle())));
|
|
EXPECT_THAT(optimized_error.translation().norm(),
|
|
::testing::Lt(error_before.translation().norm()));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace mapping_2d
|
|
} // namespace cartographer
|