cartographer/cartographer/mapping/global_trajectory_builder_i...

97 lines
3.9 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARTOGRAPHER_MAPPING_GLOBAL_TRAJECTORY_BUILDER_INTERFACE_H_
#define CARTOGRAPHER_MAPPING_GLOBAL_TRAJECTORY_BUILDER_INTERFACE_H_
#include <functional>
#include <memory>
#include <string>
#include "cartographer/common/time.h"
#include "cartographer/kalman_filter/pose_tracker.h"
#include "cartographer/mapping/submaps.h"
#include "cartographer/sensor/laser.h"
#include "cartographer/sensor/point_cloud.h"
namespace cartographer {
namespace mapping {
// This interface is used for both 2D and 3D SLAM. Implementations wire up a
// global SLAM stack, i.e. local SLAM for initial pose estimates, scan matching
// to detect loop closure, and a sparse pose graph optimization to compute
// optimized pose estimates.
class GlobalTrajectoryBuilderInterface {
public:
// Represents a newly computed pose. Each of the following steps in the pose
// estimation pipeline are provided for debugging:
//
// 1. UKF prediction
// 2. Absolute pose observation (e.g. from scan matching)
// 3. UKF estimate after integrating any measurements
//
// Finally, 'pose' is the end-user visualization of orientation and
// 'point_cloud' is the point cloud, in the local map frame.
struct PoseEstimate {
PoseEstimate() = default;
PoseEstimate(common::Time time,
const kalman_filter::PoseAndCovariance& prediction,
const kalman_filter::PoseAndCovariance& observation,
const kalman_filter::PoseAndCovariance& estimate,
const transform::Rigid3d& pose,
const sensor::PointCloud& point_cloud);
common::Time time = common::Time::min();
kalman_filter::PoseAndCovariance prediction = {
transform::Rigid3d::Identity(), kalman_filter::PoseCovariance::Zero()};
kalman_filter::PoseAndCovariance observation = {
transform::Rigid3d::Identity(), kalman_filter::PoseCovariance::Zero()};
kalman_filter::PoseAndCovariance estimate = {
transform::Rigid3d::Identity(), kalman_filter::PoseCovariance::Zero()};
transform::Rigid3d pose = transform::Rigid3d::Identity();
sensor::PointCloud point_cloud;
};
GlobalTrajectoryBuilderInterface() {}
virtual ~GlobalTrajectoryBuilderInterface() {}
GlobalTrajectoryBuilderInterface(const GlobalTrajectoryBuilderInterface&) =
delete;
GlobalTrajectoryBuilderInterface& operator=(
const GlobalTrajectoryBuilderInterface&) = delete;
virtual const Submaps* submaps() const = 0;
virtual Submaps* submaps() = 0;
virtual kalman_filter::PoseTracker* pose_tracker() const = 0;
virtual const PoseEstimate& pose_estimate() const = 0;
virtual void AddHorizontalLaserFan(common::Time,
const sensor::LaserFan3D& laser_fan) = 0;
virtual void AddImuData(common::Time time,
const Eigen::Vector3d& linear_acceleration,
const Eigen::Vector3d& angular_velocity) = 0;
virtual void AddLaserFan3D(common::Time time,
const sensor::LaserFan3D& laser_fan) = 0;
virtual void AddOdometerPose(
common::Time time, const transform::Rigid3d& pose,
const kalman_filter::PoseCovariance& covariance) = 0;
};
} // namespace mapping
} // namespace cartographer
#endif // CARTOGRAPHER_MAPPING_GLOBAL_TRAJECTORY_BUILDER_INTERFACE_H_