cartographer/cartographer/common/math.h

112 lines
3.3 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARTOGRAPHER_COMMON_MATH_H_
#define CARTOGRAPHER_COMMON_MATH_H_
#include <cmath>
#include <vector>
#include "Eigen/Core"
#include "cartographer/common/port.h"
#include "ceres/ceres.h"
namespace cartographer {
namespace common {
// Clamps 'value' to be in the range ['min', 'max'].
template <typename T>
T Clamp(const T value, const T min, const T max) {
if (value > max) {
return max;
}
if (value < min) {
return min;
}
return value;
}
// Calculates 'base'^'exponent'.
template <typename T>
constexpr T Power(T base, int exponent) {
return (exponent != 0) ? base * Power(base, exponent - 1) : T(1);
}
// Calculates a^2.
template <typename T>
constexpr T Pow2(T a) {
return Power(a, 2);
}
// Calculates the real part of the square root of 'a'. This is helpful when
// rounding errors generate a small negative argument. Otherwise std::sqrt
// returns NaN if its argument is negative.
template <typename T>
constexpr T RealSqrt(T a) {
return sqrt(std::max(T(0.), a));
}
// Converts from degrees to radians.
constexpr double DegToRad(double deg) { return M_PI * deg / 180.; }
// Converts form radians to degrees.
constexpr double RadToDeg(double rad) { return 180. * rad / M_PI; }
// Bring the 'difference' between two angles into [-pi; pi].
template <typename T>
T NormalizeAngleDifference(T difference) {
while (difference > M_PI) {
difference -= T(2. * M_PI);
}
while (difference < -M_PI) {
difference += T(2. * M_PI);
}
return difference;
}
template <typename T>
T atan2(const Eigen::Matrix<T, 2, 1>& vector) {
return ceres::atan2(vector.y(), vector.x());
}
// Computes 'A'^{-1/2} for A being symmetric, positive-semidefinite.
// Eigenvalues of 'A' are clamped to be at least 'lower_eigenvalue_bound'.
template <int N>
Eigen::Matrix<double, N, N> ComputeSpdMatrixSqrtInverse(
const Eigen::Matrix<double, N, N>& A, const double lower_eigenvalue_bound) {
Eigen::SelfAdjointEigenSolver<Eigen::Matrix<double, N, N>>
covariance_eigen_solver(A);
if (covariance_eigen_solver.info() != Eigen::Success) {
LOG(WARNING) << "SelfAdjointEigenSolver failed; A =\n" << A;
return Eigen::Matrix<double, N, N>::Identity();
}
// Since we compute the inverse, we do not allow smaller values to avoid
// infinity and NaN.
const double relative_lower_bound = lower_eigenvalue_bound;
return covariance_eigen_solver.eigenvectors() *
covariance_eigen_solver.eigenvalues()
.cwiseMax(relative_lower_bound)
.cwiseInverse()
.cwiseSqrt()
.asDiagonal() *
covariance_eigen_solver.eigenvectors().inverse();
}
} // namespace common
} // namespace cartographer
#endif // CARTOGRAPHER_COMMON_MATH_H_