cartographer/cartographer/common/rate_timer.h

137 lines
4.1 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARTOGRAPHER_COMMON_RATE_TIMER_H_
#define CARTOGRAPHER_COMMON_RATE_TIMER_H_
#include <chrono>
#include <deque>
#include <iomanip>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
#include "cartographer/common/math.h"
#include "cartographer/common/port.h"
#include "cartographer/common/time.h"
namespace cartographer {
namespace common {
// Computes the rate at which pulses come in.
template <typename ClockType = std::chrono::steady_clock>
class RateTimer {
public:
// Computes the rate at which pulses come in over 'window_duration' in wall
// time.
explicit RateTimer(const common::Duration window_duration)
: window_duration_(window_duration) {}
~RateTimer() {}
RateTimer(const RateTimer&) = delete;
RateTimer& operator=(const RateTimer&) = delete;
// Returns the pulse rate in Hz.
double ComputeRate() const {
if (events_.empty()) {
return 0.;
}
return static_cast<double>(events_.size() - 1) /
common::ToSeconds((events_.back().time - events_.front().time));
}
// Returns the ratio of the pulse rate (with supplied times) to the wall time
// rate. For example, if a sensor produces pulses at 10 Hz, but we call Pulse
// at 20 Hz wall time, this will return 2.
double ComputeWallTimeRateRatio() const {
if (events_.empty()) {
return 0.;
}
return common::ToSeconds((events_.back().time - events_.front().time)) /
std::chrono::duration_cast<std::chrono::duration<double>>(
events_.back().wall_time - events_.front().wall_time)
.count();
}
// Records an event that will contribute to the computed rate.
void Pulse(common::Time time) {
events_.push_back(Event{time, ClockType::now()});
while (events_.size() > 2 &&
(events_.back().wall_time - events_.front().wall_time) >
window_duration_) {
events_.pop_front();
}
}
// Returns a debug string representation.
string DebugString() const {
if (events_.size() < 2) {
return "unknown";
}
std::ostringstream out;
out << std::fixed << std::setprecision(2) << ComputeRate() << " Hz "
<< DeltasDebugString() << " (pulsed at "
<< ComputeWallTimeRateRatio() * 100. << "% real time)";
return out.str();
}
private:
struct Event {
common::Time time;
typename ClockType::time_point wall_time;
};
// Computes all differences in seconds between consecutive pulses.
std::vector<double> ComputeDeltasInSeconds() const {
CHECK_GT(events_.size(), 1);
const size_t count = events_.size() - 1;
std::vector<double> result;
result.reserve(count);
for (size_t i = 0; i != count; ++i) {
result.push_back(
common::ToSeconds(events_[i + 1].time - events_[i].time));
}
return result;
}
// Returns the average and standard deviation of the deltas.
string DeltasDebugString() const {
const auto deltas = ComputeDeltasInSeconds();
const double sum = std::accumulate(deltas.begin(), deltas.end(), 0.);
const double mean = sum / deltas.size();
double squared_sum = 0.;
for (const double x : deltas) {
squared_sum += common::Pow2(x - mean);
}
const double sigma = std::sqrt(squared_sum / (deltas.size() - 1));
std::ostringstream out;
out << std::scientific << std::setprecision(2) << mean << " s +/- " << sigma
<< " s";
return out.str();
}
std::deque<Event> events_;
const common::Duration window_duration_;
};
} // namespace common
} // namespace cartographer
#endif // CARTOGRAPHER_COMMON_RATE_TIMER_H_