327 lines
14 KiB
C++
327 lines
14 KiB
C++
/*
|
|
* Copyright 2016 The Cartographer Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "cartographer/mapping_2d/local_trajectory_builder.h"
|
|
|
|
#include <limits>
|
|
|
|
#include "cartographer/common/make_unique.h"
|
|
#include "cartographer/sensor/range_data.h"
|
|
|
|
namespace cartographer {
|
|
namespace mapping_2d {
|
|
|
|
proto::LocalTrajectoryBuilderOptions CreateLocalTrajectoryBuilderOptions(
|
|
common::LuaParameterDictionary* const parameter_dictionary) {
|
|
proto::LocalTrajectoryBuilderOptions options;
|
|
options.set_laser_min_range(
|
|
parameter_dictionary->GetDouble("laser_min_range"));
|
|
options.set_laser_max_range(
|
|
parameter_dictionary->GetDouble("laser_max_range"));
|
|
options.set_laser_min_z(parameter_dictionary->GetDouble("laser_min_z"));
|
|
options.set_laser_max_z(parameter_dictionary->GetDouble("laser_max_z"));
|
|
options.set_laser_missing_echo_ray_length(
|
|
parameter_dictionary->GetDouble("laser_missing_echo_ray_length"));
|
|
options.set_laser_voxel_filter_size(
|
|
parameter_dictionary->GetDouble("laser_voxel_filter_size"));
|
|
options.set_use_online_correlative_scan_matching(
|
|
parameter_dictionary->GetBool("use_online_correlative_scan_matching"));
|
|
*options.mutable_adaptive_voxel_filter_options() =
|
|
sensor::CreateAdaptiveVoxelFilterOptions(
|
|
parameter_dictionary->GetDictionary("adaptive_voxel_filter").get());
|
|
*options.mutable_real_time_correlative_scan_matcher_options() =
|
|
scan_matching::CreateRealTimeCorrelativeScanMatcherOptions(
|
|
parameter_dictionary
|
|
->GetDictionary("real_time_correlative_scan_matcher")
|
|
.get());
|
|
*options.mutable_ceres_scan_matcher_options() =
|
|
scan_matching::CreateCeresScanMatcherOptions(
|
|
parameter_dictionary->GetDictionary("ceres_scan_matcher").get());
|
|
*options.mutable_motion_filter_options() =
|
|
mapping_3d::CreateMotionFilterOptions(
|
|
parameter_dictionary->GetDictionary("motion_filter").get());
|
|
options.set_imu_gravity_time_constant(
|
|
parameter_dictionary->GetDouble("imu_gravity_time_constant"));
|
|
options.set_num_odometry_states(
|
|
parameter_dictionary->GetNonNegativeInt("num_odometry_states"));
|
|
CHECK_GT(options.num_odometry_states(), 0);
|
|
*options.mutable_submaps_options() = CreateSubmapsOptions(
|
|
parameter_dictionary->GetDictionary("submaps").get());
|
|
options.set_use_imu_data(parameter_dictionary->GetBool("use_imu_data"));
|
|
return options;
|
|
}
|
|
|
|
LocalTrajectoryBuilder::LocalTrajectoryBuilder(
|
|
const proto::LocalTrajectoryBuilderOptions& options)
|
|
: options_(options),
|
|
submaps_(options.submaps_options()),
|
|
motion_filter_(options_.motion_filter_options()),
|
|
real_time_correlative_scan_matcher_(
|
|
options_.real_time_correlative_scan_matcher_options()),
|
|
ceres_scan_matcher_(options_.ceres_scan_matcher_options()),
|
|
odometry_state_tracker_(options_.num_odometry_states()) {}
|
|
|
|
LocalTrajectoryBuilder::~LocalTrajectoryBuilder() {}
|
|
|
|
const Submaps* LocalTrajectoryBuilder::submaps() const { return &submaps_; }
|
|
|
|
sensor::RangeData LocalTrajectoryBuilder::TransformAndFilterRangeData(
|
|
const transform::Rigid3f& tracking_to_tracking_2d,
|
|
const sensor::RangeData& range_data) const {
|
|
// Drop any returns below the minimum range and convert returns beyond the
|
|
// maximum range into misses.
|
|
sensor::RangeData returns_and_misses{range_data.origin, {}, {}, {}};
|
|
for (const Eigen::Vector3f& hit : range_data.returns) {
|
|
const float range = (hit - range_data.origin).norm();
|
|
if (range >= options_.laser_min_range()) {
|
|
if (range <= options_.laser_max_range()) {
|
|
returns_and_misses.returns.push_back(hit);
|
|
} else {
|
|
returns_and_misses.misses.push_back(
|
|
range_data.origin + options_.laser_missing_echo_ray_length() *
|
|
(hit - range_data.origin).normalized());
|
|
}
|
|
}
|
|
}
|
|
const sensor::RangeData cropped = sensor::CropRangeData(
|
|
sensor::TransformRangeData(returns_and_misses, tracking_to_tracking_2d),
|
|
options_.laser_min_z(), options_.laser_max_z());
|
|
return sensor::RangeData{
|
|
cropped.origin,
|
|
sensor::VoxelFiltered(cropped.returns,
|
|
options_.laser_voxel_filter_size()),
|
|
sensor::VoxelFiltered(cropped.misses,
|
|
options_.laser_voxel_filter_size())};
|
|
}
|
|
|
|
void LocalTrajectoryBuilder::ScanMatch(
|
|
common::Time time, const transform::Rigid3d& pose_prediction,
|
|
const transform::Rigid3d& tracking_to_tracking_2d,
|
|
const sensor::RangeData& range_data_in_tracking_2d,
|
|
transform::Rigid3d* pose_observation,
|
|
kalman_filter::PoseCovariance* covariance_observation) {
|
|
const ProbabilityGrid& probability_grid =
|
|
submaps_.Get(submaps_.matching_index())->probability_grid;
|
|
transform::Rigid2d pose_prediction_2d =
|
|
transform::Project2D(pose_prediction * tracking_to_tracking_2d.inverse());
|
|
// The online correlative scan matcher will refine the initial estimate for
|
|
// the Ceres scan matcher.
|
|
transform::Rigid2d initial_ceres_pose = pose_prediction_2d;
|
|
sensor::AdaptiveVoxelFilter adaptive_voxel_filter(
|
|
options_.adaptive_voxel_filter_options());
|
|
const sensor::PointCloud filtered_point_cloud_in_tracking_2d =
|
|
adaptive_voxel_filter.Filter(range_data_in_tracking_2d.returns);
|
|
if (options_.use_online_correlative_scan_matching()) {
|
|
real_time_correlative_scan_matcher_.Match(
|
|
pose_prediction_2d, filtered_point_cloud_in_tracking_2d,
|
|
probability_grid, &initial_ceres_pose);
|
|
}
|
|
|
|
transform::Rigid2d tracking_2d_to_map;
|
|
kalman_filter::Pose2DCovariance covariance_observation_2d;
|
|
ceres::Solver::Summary summary;
|
|
ceres_scan_matcher_.Match(pose_prediction_2d, initial_ceres_pose,
|
|
filtered_point_cloud_in_tracking_2d,
|
|
probability_grid, &tracking_2d_to_map,
|
|
&covariance_observation_2d, &summary);
|
|
|
|
*pose_observation =
|
|
transform::Embed3D(tracking_2d_to_map) * tracking_to_tracking_2d;
|
|
// This covariance is used for non-yaw rotation and the fake height of 0.
|
|
constexpr double kFakePositionCovariance = 1.;
|
|
constexpr double kFakeOrientationCovariance = 1.;
|
|
*covariance_observation =
|
|
kalman_filter::Embed3D(covariance_observation_2d, kFakePositionCovariance,
|
|
kFakeOrientationCovariance);
|
|
}
|
|
|
|
std::unique_ptr<LocalTrajectoryBuilder::InsertionResult>
|
|
LocalTrajectoryBuilder::AddHorizontalRangeData(
|
|
const common::Time time, const sensor::RangeData& range_data) {
|
|
// Initialize IMU tracker now if we do not ever use an IMU.
|
|
if (!options_.use_imu_data()) {
|
|
InitializeImuTracker(time);
|
|
}
|
|
|
|
if (imu_tracker_ == nullptr) {
|
|
// Until we've initialized the IMU tracker with our first IMU message, we
|
|
// cannot compute the orientation of the laser scanner.
|
|
LOG(INFO) << "ImuTracker not yet initialized.";
|
|
return nullptr;
|
|
}
|
|
|
|
Predict(time);
|
|
const transform::Rigid3d odometry_prediction =
|
|
pose_estimate_ * odometry_correction_;
|
|
const transform::Rigid3d model_prediction = pose_estimate_;
|
|
// TODO(whess): Prefer IMU over odom orientation if configured?
|
|
const transform::Rigid3d& pose_prediction = odometry_prediction;
|
|
|
|
// Computes the rotation without yaw, as defined by GetYaw().
|
|
const transform::Rigid3d tracking_to_tracking_2d =
|
|
transform::Rigid3d::Rotation(
|
|
Eigen::Quaterniond(Eigen::AngleAxisd(
|
|
-transform::GetYaw(pose_prediction), Eigen::Vector3d::UnitZ())) *
|
|
pose_prediction.rotation());
|
|
|
|
const sensor::RangeData range_data_in_tracking_2d =
|
|
TransformAndFilterRangeData(tracking_to_tracking_2d.cast<float>(),
|
|
range_data);
|
|
|
|
if (range_data_in_tracking_2d.returns.empty()) {
|
|
LOG(WARNING) << "Dropped empty horizontal range data.";
|
|
return nullptr;
|
|
}
|
|
|
|
kalman_filter::PoseCovariance covariance_observation;
|
|
ScanMatch(time, pose_prediction, tracking_to_tracking_2d,
|
|
range_data_in_tracking_2d, &pose_estimate_,
|
|
&covariance_observation);
|
|
odometry_correction_ = transform::Rigid3d::Identity();
|
|
if (!odometry_state_tracker_.empty()) {
|
|
// We add an odometry state, so that the correction from the scan matching
|
|
// is not removed by the next odometry data we get.
|
|
odometry_state_tracker_.AddOdometryState(
|
|
{time, odometry_state_tracker_.newest().odometer_pose,
|
|
odometry_state_tracker_.newest().state_pose *
|
|
odometry_prediction.inverse() * pose_estimate_});
|
|
}
|
|
|
|
// Improve the velocity estimate.
|
|
if (last_scan_match_time_ > common::Time::min()) {
|
|
const double delta_t = common::ToSeconds(time - last_scan_match_time_);
|
|
velocity_estimate_ += (pose_estimate_.translation().head<2>() -
|
|
model_prediction.translation().head<2>()) /
|
|
delta_t;
|
|
}
|
|
last_scan_match_time_ = time_;
|
|
|
|
// Remove the untracked z-component which floats around 0 in the UKF.
|
|
const auto translation = pose_estimate_.translation();
|
|
pose_estimate_ = transform::Rigid3d(
|
|
transform::Rigid3d::Vector(translation.x(), translation.y(), 0.),
|
|
pose_estimate_.rotation());
|
|
|
|
const transform::Rigid3d tracking_2d_to_map =
|
|
pose_estimate_ * tracking_to_tracking_2d.inverse();
|
|
last_pose_estimate_ = {
|
|
time, pose_estimate_,
|
|
sensor::TransformPointCloud(range_data_in_tracking_2d.returns,
|
|
tracking_2d_to_map.cast<float>())};
|
|
|
|
const transform::Rigid2d pose_estimate_2d =
|
|
transform::Project2D(tracking_2d_to_map);
|
|
if (motion_filter_.IsSimilar(time, transform::Embed3D(pose_estimate_2d))) {
|
|
return nullptr;
|
|
}
|
|
|
|
const mapping::Submap* const matching_submap =
|
|
submaps_.Get(submaps_.matching_index());
|
|
std::vector<const mapping::Submap*> insertion_submaps;
|
|
for (int insertion_index : submaps_.insertion_indices()) {
|
|
insertion_submaps.push_back(submaps_.Get(insertion_index));
|
|
}
|
|
submaps_.InsertRangeData(
|
|
TransformRangeData(range_data_in_tracking_2d,
|
|
transform::Embed3D(pose_estimate_2d.cast<float>())));
|
|
|
|
return common::make_unique<InsertionResult>(InsertionResult{
|
|
time, &submaps_, matching_submap, insertion_submaps,
|
|
tracking_to_tracking_2d, tracking_2d_to_map, range_data_in_tracking_2d,
|
|
pose_estimate_2d, covariance_observation});
|
|
}
|
|
|
|
const mapping::GlobalTrajectoryBuilderInterface::PoseEstimate&
|
|
LocalTrajectoryBuilder::pose_estimate() const {
|
|
return last_pose_estimate_;
|
|
}
|
|
|
|
void LocalTrajectoryBuilder::AddImuData(
|
|
const common::Time time, const Eigen::Vector3d& linear_acceleration,
|
|
const Eigen::Vector3d& angular_velocity) {
|
|
CHECK(options_.use_imu_data()) << "An unexpected IMU packet was added.";
|
|
|
|
InitializeImuTracker(time);
|
|
Predict(time);
|
|
imu_tracker_->AddImuLinearAccelerationObservation(linear_acceleration);
|
|
imu_tracker_->AddImuAngularVelocityObservation(angular_velocity);
|
|
|
|
// Log a warning if the backpack inclination exceeds 20 degrees. In these
|
|
// cases, it's very likely that 2D SLAM will fail.
|
|
const Eigen::Vector3d gravity_direction =
|
|
imu_tracker_->orientation() * Eigen::Vector3d::UnitZ();
|
|
const double inclination = std::acos(gravity_direction.z());
|
|
constexpr double kMaxInclination = common::DegToRad(20.);
|
|
LOG_IF_EVERY_N(WARNING, inclination > kMaxInclination, 1000)
|
|
<< "Max inclination exceeded: " << common::RadToDeg(inclination) << " > "
|
|
<< common::RadToDeg(kMaxInclination);
|
|
}
|
|
|
|
void LocalTrajectoryBuilder::AddOdometerData(
|
|
const common::Time time, const transform::Rigid3d& odometer_pose) {
|
|
if (imu_tracker_ == nullptr) {
|
|
// Until we've initialized the IMU tracker we do not want to call Predict().
|
|
LOG(INFO) << "ImuTracker not yet initialized.";
|
|
return;
|
|
}
|
|
|
|
Predict(time);
|
|
if (!odometry_state_tracker_.empty()) {
|
|
const auto& previous_odometry_state = odometry_state_tracker_.newest();
|
|
const transform::Rigid3d delta =
|
|
previous_odometry_state.odometer_pose.inverse() * odometer_pose;
|
|
const transform::Rigid3d new_pose =
|
|
previous_odometry_state.state_pose * delta;
|
|
odometry_correction_ = pose_estimate_.inverse() * new_pose;
|
|
}
|
|
odometry_state_tracker_.AddOdometryState(
|
|
{time, odometer_pose, pose_estimate_ * odometry_correction_});
|
|
}
|
|
|
|
void LocalTrajectoryBuilder::InitializeImuTracker(const common::Time time) {
|
|
if (imu_tracker_ == nullptr) {
|
|
imu_tracker_ = common::make_unique<mapping::ImuTracker>(
|
|
options_.imu_gravity_time_constant(), time);
|
|
}
|
|
}
|
|
|
|
void LocalTrajectoryBuilder::Predict(const common::Time time) {
|
|
CHECK(imu_tracker_ != nullptr);
|
|
CHECK_LE(time_, time);
|
|
const double last_yaw = transform::GetYaw(imu_tracker_->orientation());
|
|
imu_tracker_->Advance(time);
|
|
if (time_ > common::Time::min()) {
|
|
const double delta_t = common::ToSeconds(time - time_);
|
|
// Constant velocity model.
|
|
const Eigen::Vector3d translation =
|
|
pose_estimate_.translation() +
|
|
delta_t *
|
|
Eigen::Vector3d(velocity_estimate_.x(), velocity_estimate_.y(), 0.);
|
|
// Use the current IMU tracker roll and pitch for gravity alignment, and
|
|
// apply its change in yaw.
|
|
const Eigen::Quaterniond rotation =
|
|
Eigen::AngleAxisd(
|
|
transform::GetYaw(pose_estimate_.rotation()) - last_yaw,
|
|
Eigen::Vector3d::UnitZ()) *
|
|
imu_tracker_->orientation();
|
|
pose_estimate_ = transform::Rigid3d(translation, rotation);
|
|
}
|
|
time_ = time;
|
|
}
|
|
|
|
} // namespace mapping_2d
|
|
} // namespace cartographer
|