233 lines
10 KiB
C++
233 lines
10 KiB
C++
/*
|
|
* Copyright 2016 The Cartographer Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "cartographer/mapping_3d/local_trajectory_builder.h"
|
|
|
|
#include <memory>
|
|
|
|
#include "cartographer/common/make_unique.h"
|
|
#include "cartographer/common/time.h"
|
|
#include "cartographer/mapping_2d/scan_matching/proto/real_time_correlative_scan_matcher_options.pb.h"
|
|
#include "cartographer/mapping_3d/proto/local_trajectory_builder_options.pb.h"
|
|
#include "cartographer/mapping_3d/proto/submaps_options.pb.h"
|
|
#include "cartographer/mapping_3d/scan_matching/proto/ceres_scan_matcher_options.pb.h"
|
|
#include "cartographer/mapping_3d/scan_matching/rotational_scan_matcher.h"
|
|
#include "glog/logging.h"
|
|
|
|
namespace cartographer {
|
|
namespace mapping_3d {
|
|
|
|
LocalTrajectoryBuilder::LocalTrajectoryBuilder(
|
|
const proto::LocalTrajectoryBuilderOptions& options)
|
|
: options_(options),
|
|
active_submaps_(options.submaps_options()),
|
|
motion_filter_(options.motion_filter_options()),
|
|
real_time_correlative_scan_matcher_(
|
|
common::make_unique<scan_matching::RealTimeCorrelativeScanMatcher>(
|
|
options_.real_time_correlative_scan_matcher_options())),
|
|
ceres_scan_matcher_(common::make_unique<scan_matching::CeresScanMatcher>(
|
|
options_.ceres_scan_matcher_options())),
|
|
accumulated_range_data_{Eigen::Vector3f::Zero(), {}, {}} {}
|
|
|
|
LocalTrajectoryBuilder::~LocalTrajectoryBuilder() {}
|
|
|
|
void LocalTrajectoryBuilder::AddImuData(const sensor::ImuData& imu_data) {
|
|
if (extrapolator_ != nullptr) {
|
|
extrapolator_->AddImuData(imu_data);
|
|
return;
|
|
}
|
|
// We derive velocities from poses which are at least 1 ms apart for numerical
|
|
// stability. Usually poses known to the extrapolator will be further apart
|
|
// in time and thus the last two are used.
|
|
constexpr double kExtrapolationEstimationTimeSec = 0.001;
|
|
extrapolator_ = mapping::PoseExtrapolator::InitializeWithImu(
|
|
::cartographer::common::FromSeconds(kExtrapolationEstimationTimeSec),
|
|
options_.imu_gravity_time_constant(), imu_data);
|
|
}
|
|
|
|
std::unique_ptr<LocalTrajectoryBuilder::MatchingResult>
|
|
LocalTrajectoryBuilder::AddRangeData(const common::Time time,
|
|
const sensor::TimedRangeData& range_data) {
|
|
if (extrapolator_ == nullptr) {
|
|
// Until we've initialized the extrapolator with our first IMU message, we
|
|
// cannot compute the orientation of the rangefinder.
|
|
LOG(INFO) << "IMU not yet initialized.";
|
|
return nullptr;
|
|
}
|
|
if (num_accumulated_ == 0) {
|
|
first_pose_estimate_ = extrapolator_->ExtrapolatePose(time).cast<float>();
|
|
accumulated_range_data_ = sensor::RangeData{range_data.origin, {}, {}};
|
|
}
|
|
|
|
// TODO(gaschler): Take time delta of individual points into account.
|
|
const transform::Rigid3f tracking_delta =
|
|
first_pose_estimate_.inverse() *
|
|
extrapolator_->ExtrapolatePose(time).cast<float>();
|
|
const sensor::TimedRangeData range_data_in_first_tracking =
|
|
sensor::TransformTimedRangeData(range_data, tracking_delta);
|
|
for (const Eigen::Vector4f& hit : range_data_in_first_tracking.returns) {
|
|
const Eigen::Vector3f delta =
|
|
hit.head<3>() - range_data_in_first_tracking.origin;
|
|
const float range = delta.norm();
|
|
if (range >= options_.min_range()) {
|
|
if (range <= options_.max_range()) {
|
|
accumulated_range_data_.returns.push_back(hit.head<3>());
|
|
} else {
|
|
// We insert a ray cropped to 'max_range' as a miss for hits beyond the
|
|
// maximum range. This way the free space up to the maximum range will
|
|
// be updated.
|
|
accumulated_range_data_.misses.push_back(
|
|
range_data_in_first_tracking.origin +
|
|
options_.max_range() / range * delta);
|
|
}
|
|
}
|
|
}
|
|
++num_accumulated_;
|
|
|
|
if (num_accumulated_ >= options_.scans_per_accumulation()) {
|
|
num_accumulated_ = 0;
|
|
return AddAccumulatedRangeData(
|
|
time, sensor::TransformRangeData(accumulated_range_data_,
|
|
tracking_delta.inverse()));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::unique_ptr<LocalTrajectoryBuilder::MatchingResult>
|
|
LocalTrajectoryBuilder::AddAccumulatedRangeData(
|
|
const common::Time time, const sensor::RangeData& range_data_in_tracking) {
|
|
const sensor::RangeData filtered_range_data_in_tracking = {
|
|
range_data_in_tracking.origin,
|
|
sensor::VoxelFiltered(range_data_in_tracking.returns,
|
|
options_.voxel_filter_size()),
|
|
sensor::VoxelFiltered(range_data_in_tracking.misses,
|
|
options_.voxel_filter_size())};
|
|
|
|
if (filtered_range_data_in_tracking.returns.empty()) {
|
|
LOG(WARNING) << "Dropped empty range data.";
|
|
return nullptr;
|
|
}
|
|
|
|
const transform::Rigid3d pose_prediction =
|
|
extrapolator_->ExtrapolatePose(time);
|
|
|
|
std::shared_ptr<const Submap> matching_submap =
|
|
active_submaps_.submaps().front();
|
|
transform::Rigid3d initial_ceres_pose =
|
|
matching_submap->local_pose().inverse() * pose_prediction;
|
|
sensor::AdaptiveVoxelFilter adaptive_voxel_filter(
|
|
options_.high_resolution_adaptive_voxel_filter_options());
|
|
const sensor::PointCloud high_resolution_point_cloud_in_tracking =
|
|
adaptive_voxel_filter.Filter(filtered_range_data_in_tracking.returns);
|
|
if (options_.use_online_correlative_scan_matching()) {
|
|
// We take a copy since we use 'initial_ceres_pose' as an output argument.
|
|
const transform::Rigid3d initial_pose = initial_ceres_pose;
|
|
real_time_correlative_scan_matcher_->Match(
|
|
initial_pose, high_resolution_point_cloud_in_tracking,
|
|
matching_submap->high_resolution_hybrid_grid(), &initial_ceres_pose);
|
|
}
|
|
|
|
transform::Rigid3d pose_observation_in_submap;
|
|
ceres::Solver::Summary summary;
|
|
|
|
sensor::AdaptiveVoxelFilter low_resolution_adaptive_voxel_filter(
|
|
options_.low_resolution_adaptive_voxel_filter_options());
|
|
const sensor::PointCloud low_resolution_point_cloud_in_tracking =
|
|
low_resolution_adaptive_voxel_filter.Filter(
|
|
filtered_range_data_in_tracking.returns);
|
|
ceres_scan_matcher_->Match(
|
|
matching_submap->local_pose().inverse() * pose_prediction,
|
|
initial_ceres_pose,
|
|
{{&high_resolution_point_cloud_in_tracking,
|
|
&matching_submap->high_resolution_hybrid_grid()},
|
|
{&low_resolution_point_cloud_in_tracking,
|
|
&matching_submap->low_resolution_hybrid_grid()}},
|
|
&pose_observation_in_submap, &summary);
|
|
const transform::Rigid3d pose_estimate =
|
|
matching_submap->local_pose() * pose_observation_in_submap;
|
|
extrapolator_->AddPose(time, pose_estimate);
|
|
const Eigen::Quaterniond gravity_alignment =
|
|
extrapolator_->EstimateGravityOrientation(time);
|
|
|
|
sensor::RangeData filtered_range_data_in_local = sensor::TransformRangeData(
|
|
filtered_range_data_in_tracking, pose_estimate.cast<float>());
|
|
last_pose_estimate_ = {time, pose_estimate,
|
|
filtered_range_data_in_local.returns};
|
|
std::unique_ptr<InsertionResult> insertion_result = InsertIntoSubmap(
|
|
time, filtered_range_data_in_local, filtered_range_data_in_tracking,
|
|
high_resolution_point_cloud_in_tracking,
|
|
low_resolution_point_cloud_in_tracking, pose_estimate, gravity_alignment);
|
|
return common::make_unique<MatchingResult>(MatchingResult{
|
|
time, pose_estimate, std::move(filtered_range_data_in_local),
|
|
std::move(insertion_result)});
|
|
}
|
|
|
|
void LocalTrajectoryBuilder::AddOdometryData(
|
|
const sensor::OdometryData& odometry_data) {
|
|
if (extrapolator_ == nullptr) {
|
|
// Until we've initialized the extrapolator we cannot add odometry data.
|
|
LOG(INFO) << "Extrapolator not yet initialized.";
|
|
return;
|
|
}
|
|
extrapolator_->AddOdometryData(odometry_data);
|
|
}
|
|
|
|
const mapping::PoseEstimate& LocalTrajectoryBuilder::pose_estimate() const {
|
|
return last_pose_estimate_;
|
|
}
|
|
|
|
std::unique_ptr<LocalTrajectoryBuilder::InsertionResult>
|
|
LocalTrajectoryBuilder::InsertIntoSubmap(
|
|
const common::Time time,
|
|
const sensor::RangeData& filtered_range_data_in_local,
|
|
const sensor::RangeData& filtered_range_data_in_tracking,
|
|
const sensor::PointCloud& high_resolution_point_cloud_in_tracking,
|
|
const sensor::PointCloud& low_resolution_point_cloud_in_tracking,
|
|
const transform::Rigid3d& pose_estimate,
|
|
const Eigen::Quaterniond& gravity_alignment) {
|
|
if (motion_filter_.IsSimilar(time, pose_estimate)) {
|
|
return nullptr;
|
|
}
|
|
// Querying the active submaps must be done here before calling
|
|
// InsertRangeData() since the queried values are valid for next insertion.
|
|
std::vector<std::shared_ptr<const Submap>> insertion_submaps;
|
|
for (const std::shared_ptr<Submap>& submap : active_submaps_.submaps()) {
|
|
insertion_submaps.push_back(submap);
|
|
}
|
|
active_submaps_.InsertRangeData(filtered_range_data_in_local,
|
|
gravity_alignment);
|
|
const auto rotational_scan_matcher_histogram =
|
|
scan_matching::RotationalScanMatcher::ComputeHistogram(
|
|
sensor::TransformPointCloud(
|
|
filtered_range_data_in_tracking.returns,
|
|
transform::Rigid3f::Rotation(gravity_alignment.cast<float>())),
|
|
options_.rotational_histogram_size());
|
|
return common::make_unique<InsertionResult>(
|
|
InsertionResult{std::make_shared<const mapping::TrajectoryNode::Data>(
|
|
mapping::TrajectoryNode::Data{
|
|
time,
|
|
gravity_alignment,
|
|
{}, // 'filtered_point_cloud' is only used in 2D.
|
|
high_resolution_point_cloud_in_tracking,
|
|
low_resolution_point_cloud_in_tracking,
|
|
rotational_scan_matcher_histogram,
|
|
pose_estimate}),
|
|
std::move(insertion_submaps)});
|
|
}
|
|
|
|
} // namespace mapping_3d
|
|
} // namespace cartographer
|