371 lines
16 KiB
C++
371 lines
16 KiB
C++
/*
|
|
* Copyright 2016 The Cartographer Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "cartographer/mapping/internal/2d/local_trajectory_builder_2d.h"
|
|
|
|
#include <limits>
|
|
#include <memory>
|
|
|
|
#include "cartographer/common/make_unique.h"
|
|
#include "cartographer/metrics/family_factory.h"
|
|
#include "cartographer/sensor/range_data.h"
|
|
|
|
namespace cartographer {
|
|
namespace mapping {
|
|
|
|
static auto* kLocalSlamLatencyMetric = metrics::Gauge::Null();
|
|
static auto* kLocalSlamRealTimeRatio = metrics::Gauge::Null();
|
|
static auto* kLocalSlamCpuRealTimeRatio = metrics::Gauge::Null();
|
|
static auto* kRealTimeCorrelativeScanMatcherScoreMetric =
|
|
metrics::Histogram::Null();
|
|
static auto* kCeresScanMatcherCostMetric = metrics::Histogram::Null();
|
|
static auto* kScanMatcherResidualDistanceMetric = metrics::Histogram::Null();
|
|
static auto* kScanMatcherResidualAngleMetric = metrics::Histogram::Null();
|
|
|
|
LocalTrajectoryBuilder2D::LocalTrajectoryBuilder2D(
|
|
const proto::LocalTrajectoryBuilderOptions2D& options,
|
|
const std::vector<std::string>& expected_range_sensor_ids)
|
|
: options_(options),
|
|
active_submaps_(options.submaps_options()),
|
|
motion_filter_(options_.motion_filter_options()),
|
|
real_time_correlative_scan_matcher_(
|
|
options_.real_time_correlative_scan_matcher_options()),
|
|
ceres_scan_matcher_(options_.ceres_scan_matcher_options()),
|
|
range_data_collator_(expected_range_sensor_ids) {}
|
|
|
|
LocalTrajectoryBuilder2D::~LocalTrajectoryBuilder2D() {}
|
|
|
|
sensor::RangeData
|
|
LocalTrajectoryBuilder2D::TransformToGravityAlignedFrameAndFilter(
|
|
const transform::Rigid3f& transform_to_gravity_aligned_frame,
|
|
const sensor::RangeData& range_data) const {
|
|
const sensor::RangeData cropped =
|
|
sensor::CropRangeData(sensor::TransformRangeData(
|
|
range_data, transform_to_gravity_aligned_frame),
|
|
options_.min_z(), options_.max_z());
|
|
return sensor::RangeData{
|
|
cropped.origin,
|
|
sensor::VoxelFilter(options_.voxel_filter_size()).Filter(cropped.returns),
|
|
sensor::VoxelFilter(options_.voxel_filter_size()).Filter(cropped.misses)};
|
|
}
|
|
|
|
std::unique_ptr<transform::Rigid2d> LocalTrajectoryBuilder2D::ScanMatch(
|
|
const common::Time time, const transform::Rigid2d& pose_prediction,
|
|
const sensor::PointCloud& filtered_gravity_aligned_point_cloud) {
|
|
if (active_submaps_.submaps().empty()) {
|
|
return common::make_unique<transform::Rigid2d>(pose_prediction);
|
|
}
|
|
std::shared_ptr<const Submap2D> matching_submap =
|
|
active_submaps_.submaps().front();
|
|
// The online correlative scan matcher will refine the initial estimate for
|
|
// the Ceres scan matcher.
|
|
transform::Rigid2d initial_ceres_pose = pose_prediction;
|
|
|
|
if (options_.use_online_correlative_scan_matching()) {
|
|
CHECK_EQ(options_.submaps_options().grid_options_2d().grid_type(),
|
|
proto::GridOptions2D_GridType_PROBABILITY_GRID);
|
|
const double score = real_time_correlative_scan_matcher_.Match(
|
|
pose_prediction, filtered_gravity_aligned_point_cloud,
|
|
*static_cast<const ProbabilityGrid*>(matching_submap->grid()),
|
|
&initial_ceres_pose);
|
|
kRealTimeCorrelativeScanMatcherScoreMetric->Observe(score);
|
|
}
|
|
|
|
auto pose_observation = common::make_unique<transform::Rigid2d>();
|
|
ceres::Solver::Summary summary;
|
|
ceres_scan_matcher_.Match(pose_prediction.translation(), initial_ceres_pose,
|
|
filtered_gravity_aligned_point_cloud,
|
|
*matching_submap->grid(), pose_observation.get(),
|
|
&summary);
|
|
if (pose_observation) {
|
|
kCeresScanMatcherCostMetric->Observe(summary.final_cost);
|
|
const double residual_distance =
|
|
(pose_observation->translation() - pose_prediction.translation())
|
|
.norm();
|
|
kScanMatcherResidualDistanceMetric->Observe(residual_distance);
|
|
const double residual_angle =
|
|
std::abs(pose_observation->rotation().angle() -
|
|
pose_prediction.rotation().angle());
|
|
kScanMatcherResidualAngleMetric->Observe(residual_angle);
|
|
}
|
|
return pose_observation;
|
|
}
|
|
|
|
std::unique_ptr<LocalTrajectoryBuilder2D::MatchingResult>
|
|
LocalTrajectoryBuilder2D::AddRangeData(
|
|
const std::string& sensor_id,
|
|
const sensor::TimedPointCloudData& unsynchronized_data) {
|
|
auto synchronized_data =
|
|
range_data_collator_.AddRangeData(sensor_id, unsynchronized_data);
|
|
if (synchronized_data.ranges.empty()) {
|
|
LOG(INFO) << "Range data collator filling buffer.";
|
|
return nullptr;
|
|
}
|
|
|
|
const common::Time& time = synchronized_data.time;
|
|
// Initialize extrapolator now if we do not ever use an IMU.
|
|
if (!options_.use_imu_data()) {
|
|
InitializeExtrapolator(time);
|
|
}
|
|
|
|
if (extrapolator_ == nullptr) {
|
|
// Until we've initialized the extrapolator with our first IMU message, we
|
|
// cannot compute the orientation of the rangefinder.
|
|
LOG(INFO) << "Extrapolator not yet initialized.";
|
|
return nullptr;
|
|
}
|
|
|
|
CHECK(!synchronized_data.ranges.empty());
|
|
// TODO(gaschler): Check if this can strictly be 0.
|
|
CHECK_LE(synchronized_data.ranges.back().point_time[3], 0.f);
|
|
const common::Time time_first_point =
|
|
time +
|
|
common::FromSeconds(synchronized_data.ranges.front().point_time[3]);
|
|
if (time_first_point < extrapolator_->GetLastPoseTime()) {
|
|
LOG(INFO) << "Extrapolator is still initializing.";
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<transform::Rigid3f> range_data_poses;
|
|
range_data_poses.reserve(synchronized_data.ranges.size());
|
|
bool warned = false;
|
|
for (const auto& range : synchronized_data.ranges) {
|
|
common::Time time_point = time + common::FromSeconds(range.point_time[3]);
|
|
if (time_point < extrapolator_->GetLastExtrapolatedTime()) {
|
|
if (!warned) {
|
|
LOG(ERROR)
|
|
<< "Timestamp of individual range data point jumps backwards from "
|
|
<< extrapolator_->GetLastExtrapolatedTime() << " to " << time_point;
|
|
warned = true;
|
|
}
|
|
time_point = extrapolator_->GetLastExtrapolatedTime();
|
|
}
|
|
range_data_poses.push_back(
|
|
extrapolator_->ExtrapolatePose(time_point).cast<float>());
|
|
}
|
|
|
|
if (num_accumulated_ == 0) {
|
|
// 'accumulated_range_data_.origin' is uninitialized until the last
|
|
// accumulation.
|
|
accumulated_range_data_ = sensor::RangeData{{}, {}, {}};
|
|
}
|
|
|
|
// Drop any returns below the minimum range and convert returns beyond the
|
|
// maximum range into misses.
|
|
for (size_t i = 0; i < synchronized_data.ranges.size(); ++i) {
|
|
const Eigen::Vector4f& hit = synchronized_data.ranges[i].point_time;
|
|
const Eigen::Vector3f origin_in_local =
|
|
range_data_poses[i] *
|
|
synchronized_data.origins.at(synchronized_data.ranges[i].origin_index);
|
|
const Eigen::Vector3f hit_in_local = range_data_poses[i] * hit.head<3>();
|
|
const Eigen::Vector3f delta = hit_in_local - origin_in_local;
|
|
const float range = delta.norm();
|
|
if (range >= options_.min_range()) {
|
|
if (range <= options_.max_range()) {
|
|
accumulated_range_data_.returns.push_back(hit_in_local);
|
|
} else {
|
|
accumulated_range_data_.misses.push_back(
|
|
origin_in_local +
|
|
options_.missing_data_ray_length() / range * delta);
|
|
}
|
|
}
|
|
}
|
|
++num_accumulated_;
|
|
|
|
if (num_accumulated_ >= options_.num_accumulated_range_data()) {
|
|
const common::Time current_sensor_time = synchronized_data.time;
|
|
absl::optional<common::Duration> sensor_duration;
|
|
if (last_sensor_time_.has_value()) {
|
|
sensor_duration = current_sensor_time - last_sensor_time_.value();
|
|
}
|
|
last_sensor_time_ = current_sensor_time;
|
|
num_accumulated_ = 0;
|
|
const transform::Rigid3d gravity_alignment = transform::Rigid3d::Rotation(
|
|
extrapolator_->EstimateGravityOrientation(time));
|
|
// TODO(gaschler): This assumes that 'range_data_poses.back()' is at time
|
|
// 'time'.
|
|
accumulated_range_data_.origin = range_data_poses.back().translation();
|
|
return AddAccumulatedRangeData(
|
|
time,
|
|
TransformToGravityAlignedFrameAndFilter(
|
|
gravity_alignment.cast<float>() * range_data_poses.back().inverse(),
|
|
accumulated_range_data_),
|
|
gravity_alignment, sensor_duration);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::unique_ptr<LocalTrajectoryBuilder2D::MatchingResult>
|
|
LocalTrajectoryBuilder2D::AddAccumulatedRangeData(
|
|
const common::Time time,
|
|
const sensor::RangeData& gravity_aligned_range_data,
|
|
const transform::Rigid3d& gravity_alignment,
|
|
const absl::optional<common::Duration>& sensor_duration) {
|
|
if (gravity_aligned_range_data.returns.empty()) {
|
|
LOG(WARNING) << "Dropped empty horizontal range data.";
|
|
return nullptr;
|
|
}
|
|
|
|
// Computes a gravity aligned pose prediction.
|
|
const transform::Rigid3d non_gravity_aligned_pose_prediction =
|
|
extrapolator_->ExtrapolatePose(time);
|
|
const transform::Rigid2d pose_prediction = transform::Project2D(
|
|
non_gravity_aligned_pose_prediction * gravity_alignment.inverse());
|
|
|
|
const sensor::PointCloud& filtered_gravity_aligned_point_cloud =
|
|
sensor::AdaptiveVoxelFilter(options_.adaptive_voxel_filter_options())
|
|
.Filter(gravity_aligned_range_data.returns);
|
|
if (filtered_gravity_aligned_point_cloud.empty()) {
|
|
return nullptr;
|
|
}
|
|
|
|
// local map frame <- gravity-aligned frame
|
|
std::unique_ptr<transform::Rigid2d> pose_estimate_2d =
|
|
ScanMatch(time, pose_prediction, filtered_gravity_aligned_point_cloud);
|
|
if (pose_estimate_2d == nullptr) {
|
|
LOG(WARNING) << "Scan matching failed.";
|
|
return nullptr;
|
|
}
|
|
const transform::Rigid3d pose_estimate =
|
|
transform::Embed3D(*pose_estimate_2d) * gravity_alignment;
|
|
extrapolator_->AddPose(time, pose_estimate);
|
|
|
|
sensor::RangeData range_data_in_local =
|
|
TransformRangeData(gravity_aligned_range_data,
|
|
transform::Embed3D(pose_estimate_2d->cast<float>()));
|
|
std::unique_ptr<InsertionResult> insertion_result = InsertIntoSubmap(
|
|
time, range_data_in_local, filtered_gravity_aligned_point_cloud,
|
|
pose_estimate, gravity_alignment.rotation());
|
|
|
|
const auto wall_time = std::chrono::steady_clock::now();
|
|
if (last_wall_time_.has_value()) {
|
|
const auto wall_time_duration = wall_time - last_wall_time_.value();
|
|
kLocalSlamLatencyMetric->Set(common::ToSeconds(wall_time_duration));
|
|
if (sensor_duration.has_value()) {
|
|
kLocalSlamRealTimeRatio->Set(common::ToSeconds(sensor_duration.value()) /
|
|
common::ToSeconds(wall_time_duration));
|
|
}
|
|
}
|
|
const double thread_cpu_time_seconds = common::GetThreadCpuTimeSeconds();
|
|
if (last_thread_cpu_time_seconds_.has_value()) {
|
|
const double thread_cpu_duration_seconds =
|
|
thread_cpu_time_seconds - last_thread_cpu_time_seconds_.value();
|
|
if (sensor_duration.has_value()) {
|
|
kLocalSlamCpuRealTimeRatio->Set(
|
|
common::ToSeconds(sensor_duration.value()) /
|
|
thread_cpu_duration_seconds);
|
|
}
|
|
}
|
|
last_wall_time_ = wall_time;
|
|
last_thread_cpu_time_seconds_ = thread_cpu_time_seconds;
|
|
return common::make_unique<MatchingResult>(
|
|
MatchingResult{time, pose_estimate, std::move(range_data_in_local),
|
|
std::move(insertion_result)});
|
|
}
|
|
|
|
std::unique_ptr<LocalTrajectoryBuilder2D::InsertionResult>
|
|
LocalTrajectoryBuilder2D::InsertIntoSubmap(
|
|
const common::Time time, const sensor::RangeData& range_data_in_local,
|
|
const sensor::PointCloud& filtered_gravity_aligned_point_cloud,
|
|
const transform::Rigid3d& pose_estimate,
|
|
const Eigen::Quaterniond& gravity_alignment) {
|
|
if (motion_filter_.IsSimilar(time, pose_estimate)) {
|
|
return nullptr;
|
|
}
|
|
std::vector<std::shared_ptr<const Submap2D>> insertion_submaps =
|
|
active_submaps_.InsertRangeData(range_data_in_local);
|
|
return common::make_unique<InsertionResult>(InsertionResult{
|
|
std::make_shared<const TrajectoryNode::Data>(TrajectoryNode::Data{
|
|
time,
|
|
gravity_alignment,
|
|
filtered_gravity_aligned_point_cloud,
|
|
{}, // 'high_resolution_point_cloud' is only used in 3D.
|
|
{}, // 'low_resolution_point_cloud' is only used in 3D.
|
|
{}, // 'rotational_scan_matcher_histogram' is only used in 3D.
|
|
pose_estimate}),
|
|
std::move(insertion_submaps)});
|
|
}
|
|
|
|
void LocalTrajectoryBuilder2D::AddImuData(const sensor::ImuData& imu_data) {
|
|
CHECK(options_.use_imu_data()) << "An unexpected IMU packet was added.";
|
|
InitializeExtrapolator(imu_data.time);
|
|
extrapolator_->AddImuData(imu_data);
|
|
}
|
|
|
|
void LocalTrajectoryBuilder2D::AddOdometryData(
|
|
const sensor::OdometryData& odometry_data) {
|
|
if (extrapolator_ == nullptr) {
|
|
// Until we've initialized the extrapolator we cannot add odometry data.
|
|
LOG(INFO) << "Extrapolator not yet initialized.";
|
|
return;
|
|
}
|
|
extrapolator_->AddOdometryData(odometry_data);
|
|
}
|
|
|
|
void LocalTrajectoryBuilder2D::InitializeExtrapolator(const common::Time time) {
|
|
if (extrapolator_ != nullptr) {
|
|
return;
|
|
}
|
|
// We derive velocities from poses which are at least 1 ms apart for numerical
|
|
// stability. Usually poses known to the extrapolator will be further apart
|
|
// in time and thus the last two are used.
|
|
constexpr double kExtrapolationEstimationTimeSec = 0.001;
|
|
// TODO(gaschler): Consider using InitializeWithImu as 3D does.
|
|
extrapolator_ = common::make_unique<PoseExtrapolator>(
|
|
::cartographer::common::FromSeconds(kExtrapolationEstimationTimeSec),
|
|
options_.imu_gravity_time_constant());
|
|
extrapolator_->AddPose(time, transform::Rigid3d::Identity());
|
|
}
|
|
|
|
void LocalTrajectoryBuilder2D::RegisterMetrics(
|
|
metrics::FamilyFactory* family_factory) {
|
|
auto* latency = family_factory->NewGaugeFamily(
|
|
"mapping_2d_local_trajectory_builder_latency",
|
|
"Duration from first incoming point cloud in accumulation to local slam "
|
|
"result");
|
|
kLocalSlamLatencyMetric = latency->Add({});
|
|
auto* real_time_ratio = family_factory->NewGaugeFamily(
|
|
"mapping_2d_local_trajectory_builder_real_time_ratio",
|
|
"sensor duration / wall clock duration.");
|
|
kLocalSlamRealTimeRatio = real_time_ratio->Add({});
|
|
|
|
auto* cpu_real_time_ratio = family_factory->NewGaugeFamily(
|
|
"mapping_2d_local_trajectory_builder_cpu_real_time_ratio",
|
|
"sensor duration / cpu duration.");
|
|
kLocalSlamCpuRealTimeRatio = cpu_real_time_ratio->Add({});
|
|
auto score_boundaries = metrics::Histogram::FixedWidth(0.05, 20);
|
|
auto* scores = family_factory->NewHistogramFamily(
|
|
"mapping_2d_local_trajectory_builder_scores", "Local scan matcher scores",
|
|
score_boundaries);
|
|
kRealTimeCorrelativeScanMatcherScoreMetric =
|
|
scores->Add({{"scan_matcher", "real_time_correlative"}});
|
|
auto cost_boundaries = metrics::Histogram::ScaledPowersOf(2, 0.01, 100);
|
|
auto* costs = family_factory->NewHistogramFamily(
|
|
"mapping_2d_local_trajectory_builder_costs", "Local scan matcher costs",
|
|
cost_boundaries);
|
|
kCeresScanMatcherCostMetric = costs->Add({{"scan_matcher", "ceres"}});
|
|
auto distance_boundaries = metrics::Histogram::ScaledPowersOf(2, 0.01, 10);
|
|
auto* residuals = family_factory->NewHistogramFamily(
|
|
"mapping_2d_local_trajectory_builder_residuals",
|
|
"Local scan matcher residuals", distance_boundaries);
|
|
kScanMatcherResidualDistanceMetric =
|
|
residuals->Add({{"component", "distance"}});
|
|
kScanMatcherResidualAngleMetric = residuals->Add({{"component", "angle"}});
|
|
}
|
|
|
|
} // namespace mapping
|
|
} // namespace cartographer
|