cartographer/cartographer/mapping/internal/3d/imu_integration.h

164 lines
6.3 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARTOGRAPHER_MAPPING_INTERNAL_3D_IMU_INTEGRATION_H_
#define CARTOGRAPHER_MAPPING_INTERNAL_3D_IMU_INTEGRATION_H_
#include <algorithm>
#include <deque>
#include "Eigen/Core"
#include "Eigen/Geometry"
#include "cartographer/common/time.h"
#include "cartographer/sensor/imu_data.h"
#include "cartographer/transform/rigid_transform.h"
#include "cartographer/transform/transform.h"
#include "glog/logging.h"
namespace cartographer {
namespace mapping {
template <typename T>
struct IntegrateImuResult {
Eigen::Matrix<T, 3, 1> delta_velocity;
Eigen::Matrix<T, 3, 1> delta_translation;
Eigen::Quaternion<T> delta_rotation;
};
template <typename T, typename RangeType, typename IteratorType>
IntegrateImuResult<T> IntegrateImu(
const RangeType& imu_data,
const Eigen::Transform<T, 3, Eigen::Affine>&
linear_acceleration_calibration,
const Eigen::Transform<T, 3, Eigen::Affine>& angular_velocity_calibration,
const common::Time start_time, const common::Time end_time,
IteratorType* const it) {
CHECK_LE(start_time, end_time);
CHECK(*it != imu_data.end());
CHECK_LE((*it)->time, start_time);
if (std::next(*it) != imu_data.end()) {
CHECK_GT(std::next(*it)->time, start_time);
}
common::Time current_time = start_time;
IntegrateImuResult<T> result = {Eigen::Matrix<T, 3, 1>::Zero(),
Eigen::Matrix<T, 3, 1>::Zero(),
Eigen::Quaterniond::Identity().cast<T>()};
while (current_time < end_time) {
common::Time next_imu_data = common::Time::max();
if (std::next(*it) != imu_data.end()) {
next_imu_data = std::next(*it)->time;
}
common::Time next_time = std::min(next_imu_data, end_time);
const T delta_t(common::ToSeconds(next_time - current_time));
const Eigen::Matrix<T, 3, 1> delta_angle =
(angular_velocity_calibration *
(*it)->angular_velocity.template cast<T>()) *
delta_t;
result.delta_rotation *=
transform::AngleAxisVectorToRotationQuaternion(delta_angle);
result.delta_velocity += result.delta_rotation *
((linear_acceleration_calibration *
(*it)->linear_acceleration.template cast<T>()) *
delta_t);
result.delta_translation += delta_t * result.delta_velocity;
current_time = next_time;
if (current_time == next_imu_data) {
++(*it);
}
}
return result;
}
// Returns velocity delta in map frame.
template <typename RangeType, typename IteratorType>
IntegrateImuResult<double> IntegrateImu(const RangeType& imu_data,
const common::Time start_time,
const common::Time end_time,
IteratorType* const it) {
return IntegrateImu<double, RangeType, IteratorType>(
imu_data, Eigen::Affine3d::Identity(), Eigen::Affine3d::Identity(),
start_time, end_time, it);
}
template <typename T>
struct ExtrapolatePoseResult {
transform::Rigid3<T> pose;
Eigen::Matrix<T, 3, 1> velocity;
};
// Returns pose and linear velocity at 'time' which is equal to
// 'prev_from_tracking' extrapolated using IMU data.
template <typename T, typename RangeType, typename IteratorType>
ExtrapolatePoseResult<T> ExtrapolatePoseWithImu(
const transform::Rigid3<T>& prev_from_tracking,
const Eigen::Matrix<T, 3, 1>& prev_velocity_in_tracking,
const common::Time prev_time, const Eigen::Matrix<T, 3, 1>& gravity,
const common::Time time, const RangeType& imu_data,
IteratorType* const imu_it) {
const IntegrateImuResult<T> result =
IntegrateImu(imu_data, Eigen::Transform<T, 3, Eigen::Affine>::Identity(),
Eigen::Transform<T, 3, Eigen::Affine>::Identity(), prev_time,
time, imu_it);
const T delta_t = static_cast<T>(common::ToSeconds(time - prev_time));
const Eigen::Matrix<T, 3, 1> translation =
prev_from_tracking.translation() +
prev_from_tracking.rotation() *
(delta_t * prev_velocity_in_tracking + result.delta_translation) -
static_cast<T>(.5) * delta_t * delta_t * gravity;
const Eigen::Quaternion<T> rotation =
prev_from_tracking.rotation() * result.delta_rotation;
const Eigen::Matrix<T, 3, 1> velocity =
prev_from_tracking.rotation() *
(prev_velocity_in_tracking + result.delta_velocity) -
delta_t * gravity;
return ExtrapolatePoseResult<T>{transform::Rigid3<T>(translation, rotation),
velocity};
}
// Same as above but given the last two poses.
template <typename T, typename RangeType, typename IteratorType>
ExtrapolatePoseResult<T> ExtrapolatePoseWithImu(
const transform::Rigid3<T>& prev_from_tracking,
const common::Time prev_time,
const transform::Rigid3<T>& prev_prev_from_tracking,
const common::Time prev_prev_time, const Eigen::Matrix<T, 3, 1>& gravity,
const common::Time time, const RangeType& imu_data,
IteratorType* const imu_it) {
// TODO(danielsievers): Really we should integrate velocities starting from
// the midpoint in between two poses, since this is how we fit them to poses
// in the optimization.
const T prev_delta_t =
static_cast<T>(common::ToSeconds(prev_time - prev_prev_time));
const Eigen::Matrix<T, 3, 1> prev_velocity_in_tracking =
prev_from_tracking.inverse().rotation() *
(prev_from_tracking.translation() -
prev_prev_from_tracking.translation()) /
prev_delta_t;
return ExtrapolatePoseWithImu(prev_from_tracking, prev_velocity_in_tracking,
prev_time, gravity, time, imu_data, imu_it);
}
} // namespace mapping
} // namespace cartographer
#endif // CARTOGRAPHER_MAPPING_INTERNAL_3D_IMU_INTEGRATION_H_