cartographer/cartographer/mapping_2d/local_trajectory_builder.cc

227 lines
9.0 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cartographer/mapping_2d/local_trajectory_builder.h"
#include <limits>
#include <memory>
#include "cartographer/common/make_unique.h"
#include "cartographer/sensor/range_data.h"
namespace cartographer {
namespace mapping_2d {
LocalTrajectoryBuilder::LocalTrajectoryBuilder(
const proto::LocalTrajectoryBuilderOptions& options)
: options_(options),
active_submaps_(options.submaps_options()),
motion_filter_(options_.motion_filter_options()),
real_time_correlative_scan_matcher_(
options_.real_time_correlative_scan_matcher_options()),
ceres_scan_matcher_(options_.ceres_scan_matcher_options()) {}
LocalTrajectoryBuilder::~LocalTrajectoryBuilder() {}
sensor::RangeData LocalTrajectoryBuilder::TransformAndFilterRangeData(
const transform::Rigid3f& gravity_alignment,
const sensor::RangeData& range_data) const {
const sensor::RangeData cropped = sensor::CropRangeData(
sensor::TransformRangeData(range_data, gravity_alignment),
options_.min_z(), options_.max_z());
return sensor::RangeData{
cropped.origin,
sensor::VoxelFiltered(cropped.returns, options_.voxel_filter_size()),
sensor::VoxelFiltered(cropped.misses, options_.voxel_filter_size())};
}
void LocalTrajectoryBuilder::ScanMatch(
const common::Time time, const transform::Rigid2d& pose_prediction,
const sensor::RangeData& gravity_aligned_range_data,
transform::Rigid2d* const pose_observation) {
std::shared_ptr<const Submap> matching_submap =
active_submaps_.submaps().front();
// The online correlative scan matcher will refine the initial estimate for
// the Ceres scan matcher.
transform::Rigid2d initial_ceres_pose = pose_prediction;
sensor::AdaptiveVoxelFilter adaptive_voxel_filter(
options_.adaptive_voxel_filter_options());
const sensor::PointCloud filtered_gravity_aligned_point_cloud =
adaptive_voxel_filter.Filter(gravity_aligned_range_data.returns);
if (options_.use_online_correlative_scan_matching()) {
real_time_correlative_scan_matcher_.Match(
pose_prediction, filtered_gravity_aligned_point_cloud,
matching_submap->probability_grid(), &initial_ceres_pose);
}
ceres::Solver::Summary summary;
ceres_scan_matcher_.Match(
pose_prediction, initial_ceres_pose, filtered_gravity_aligned_point_cloud,
matching_submap->probability_grid(), pose_observation, &summary);
}
std::unique_ptr<LocalTrajectoryBuilder::InsertionResult>
LocalTrajectoryBuilder::AddRangeData(const common::Time time,
const sensor::RangeData& range_data) {
// Initialize extrapolator now if we do not ever use an IMU.
if (!options_.use_imu_data()) {
InitializeExtrapolator(time);
}
if (extrapolator_ == nullptr) {
// Until we've initialized the extrapolator with our first IMU message, we
// cannot compute the orientation of the rangefinder.
LOG(INFO) << "Extrapolator not yet initialized.";
return nullptr;
}
if (num_accumulated_ == 0) {
first_pose_estimate_ = extrapolator_->ExtrapolatePose(time).cast<float>();
accumulated_range_data_ =
sensor::RangeData{Eigen::Vector3f::Zero(), {}, {}};
}
const transform::Rigid3f tracking_delta =
first_pose_estimate_.inverse() *
extrapolator_->ExtrapolatePose(time).cast<float>();
const sensor::RangeData range_data_in_first_tracking =
sensor::TransformRangeData(range_data, tracking_delta);
// Drop any returns below the minimum range and convert returns beyond the
// maximum range into misses.
for (const Eigen::Vector3f& hit : range_data_in_first_tracking.returns) {
const Eigen::Vector3f delta = hit - range_data_in_first_tracking.origin;
const float range = delta.norm();
if (range >= options_.min_range()) {
if (range <= options_.max_range()) {
accumulated_range_data_.returns.push_back(hit);
} else {
accumulated_range_data_.misses.push_back(
range_data_in_first_tracking.origin +
options_.missing_data_ray_length() / range * delta);
}
}
}
++num_accumulated_;
if (num_accumulated_ >= options_.scans_per_accumulation()) {
num_accumulated_ = 0;
return AddAccumulatedRangeData(
time, sensor::TransformRangeData(accumulated_range_data_,
tracking_delta.inverse()));
}
return nullptr;
}
std::unique_ptr<LocalTrajectoryBuilder::InsertionResult>
LocalTrajectoryBuilder::AddAccumulatedRangeData(
const common::Time time, const sensor::RangeData& range_data) {
// Transforms 'range_data' into a frame where gravity direction is
// approximately +z.
const transform::Rigid3d gravity_alignment = transform::Rigid3d::Rotation(
extrapolator_->EstimateGravityOrientation(time));
const sensor::RangeData gravity_aligned_range_data =
TransformAndFilterRangeData(gravity_alignment.cast<float>(), range_data);
if (gravity_aligned_range_data.returns.empty()) {
LOG(WARNING) << "Dropped empty horizontal range data.";
return nullptr;
}
// Computes a gravity aligned pose prediction.
const transform::Rigid3d non_gravity_aligned_pose_prediction =
extrapolator_->ExtrapolatePose(time);
const transform::Rigid2d pose_prediction = transform::Project2D(
non_gravity_aligned_pose_prediction * gravity_alignment.inverse());
transform::Rigid2d pose_estimate_2d;
ScanMatch(time, pose_prediction, gravity_aligned_range_data,
&pose_estimate_2d);
const transform::Rigid3d pose_estimate =
transform::Embed3D(pose_estimate_2d) * gravity_alignment;
extrapolator_->AddPose(time, pose_estimate);
last_pose_estimate_ = {
time, pose_estimate,
sensor::TransformPointCloud(
gravity_aligned_range_data.returns,
transform::Embed3D(pose_estimate_2d.cast<float>()))};
if (motion_filter_.IsSimilar(time, pose_estimate)) {
return nullptr;
}
// Querying the active submaps must be done here before calling
// InsertRangeData() since the queried values are valid for next insertion.
std::vector<std::shared_ptr<const Submap>> insertion_submaps;
for (const std::shared_ptr<Submap>& submap : active_submaps_.submaps()) {
insertion_submaps.push_back(submap);
}
active_submaps_.InsertRangeData(
TransformRangeData(gravity_aligned_range_data,
transform::Embed3D(pose_estimate_2d.cast<float>())));
sensor::AdaptiveVoxelFilter adaptive_voxel_filter(
options_.loop_closure_adaptive_voxel_filter_options());
const sensor::PointCloud filtered_gravity_aligned_point_cloud =
adaptive_voxel_filter.Filter(gravity_aligned_range_data.returns);
return common::make_unique<InsertionResult>(InsertionResult{
std::make_shared<const mapping::TrajectoryNode::Data>(
mapping::TrajectoryNode::Data{
time,
gravity_alignment.rotation(),
filtered_gravity_aligned_point_cloud,
{}, // 'high_resolution_point_cloud' is only used in 3D.
{}, // 'low_resolution_point_cloud' is only used in 3D.
}),
pose_estimate, std::move(insertion_submaps)});
}
const mapping::PoseEstimate& LocalTrajectoryBuilder::pose_estimate() const {
return last_pose_estimate_;
}
void LocalTrajectoryBuilder::AddImuData(const sensor::ImuData& imu_data) {
CHECK(options_.use_imu_data()) << "An unexpected IMU packet was added.";
InitializeExtrapolator(imu_data.time);
extrapolator_->AddImuData(imu_data);
}
void LocalTrajectoryBuilder::AddOdometerData(
const sensor::OdometryData& odometry_data) {
if (extrapolator_ == nullptr) {
// Until we've initialized the extrapolator we cannot add odometry data.
LOG(INFO) << "Extrapolator not yet initialized.";
return;
}
extrapolator_->AddOdometryData(odometry_data);
}
void LocalTrajectoryBuilder::InitializeExtrapolator(const common::Time time) {
if (extrapolator_ != nullptr) {
return;
}
// We derive velocities from poses which are at least 1 ms apart for numerical
// stability. Usually poses known to the extrapolator will be further apart
// in time and thus the last two are used.
constexpr double kExtrapolationEstimationTimeSec = 0.001;
extrapolator_ = common::make_unique<mapping::PoseExtrapolator>(
::cartographer::common::FromSeconds(kExtrapolationEstimationTimeSec),
options_.imu_gravity_time_constant());
extrapolator_->AddPose(time, transform::Rigid3d::Identity());
}
} // namespace mapping_2d
} // namespace cartographer