227 lines
9.0 KiB
C++
227 lines
9.0 KiB
C++
/*
|
|
* Copyright 2016 The Cartographer Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "cartographer/mapping_2d/local_trajectory_builder.h"
|
|
|
|
#include <limits>
|
|
#include <memory>
|
|
|
|
#include "cartographer/common/make_unique.h"
|
|
#include "cartographer/sensor/range_data.h"
|
|
|
|
namespace cartographer {
|
|
namespace mapping_2d {
|
|
|
|
LocalTrajectoryBuilder::LocalTrajectoryBuilder(
|
|
const proto::LocalTrajectoryBuilderOptions& options)
|
|
: options_(options),
|
|
active_submaps_(options.submaps_options()),
|
|
motion_filter_(options_.motion_filter_options()),
|
|
real_time_correlative_scan_matcher_(
|
|
options_.real_time_correlative_scan_matcher_options()),
|
|
ceres_scan_matcher_(options_.ceres_scan_matcher_options()) {}
|
|
|
|
LocalTrajectoryBuilder::~LocalTrajectoryBuilder() {}
|
|
|
|
sensor::RangeData LocalTrajectoryBuilder::TransformAndFilterRangeData(
|
|
const transform::Rigid3f& gravity_alignment,
|
|
const sensor::RangeData& range_data) const {
|
|
const sensor::RangeData cropped = sensor::CropRangeData(
|
|
sensor::TransformRangeData(range_data, gravity_alignment),
|
|
options_.min_z(), options_.max_z());
|
|
return sensor::RangeData{
|
|
cropped.origin,
|
|
sensor::VoxelFiltered(cropped.returns, options_.voxel_filter_size()),
|
|
sensor::VoxelFiltered(cropped.misses, options_.voxel_filter_size())};
|
|
}
|
|
|
|
void LocalTrajectoryBuilder::ScanMatch(
|
|
const common::Time time, const transform::Rigid2d& pose_prediction,
|
|
const sensor::RangeData& gravity_aligned_range_data,
|
|
transform::Rigid2d* const pose_observation) {
|
|
std::shared_ptr<const Submap> matching_submap =
|
|
active_submaps_.submaps().front();
|
|
// The online correlative scan matcher will refine the initial estimate for
|
|
// the Ceres scan matcher.
|
|
transform::Rigid2d initial_ceres_pose = pose_prediction;
|
|
sensor::AdaptiveVoxelFilter adaptive_voxel_filter(
|
|
options_.adaptive_voxel_filter_options());
|
|
const sensor::PointCloud filtered_gravity_aligned_point_cloud =
|
|
adaptive_voxel_filter.Filter(gravity_aligned_range_data.returns);
|
|
if (options_.use_online_correlative_scan_matching()) {
|
|
real_time_correlative_scan_matcher_.Match(
|
|
pose_prediction, filtered_gravity_aligned_point_cloud,
|
|
matching_submap->probability_grid(), &initial_ceres_pose);
|
|
}
|
|
|
|
ceres::Solver::Summary summary;
|
|
ceres_scan_matcher_.Match(
|
|
pose_prediction, initial_ceres_pose, filtered_gravity_aligned_point_cloud,
|
|
matching_submap->probability_grid(), pose_observation, &summary);
|
|
}
|
|
|
|
std::unique_ptr<LocalTrajectoryBuilder::InsertionResult>
|
|
LocalTrajectoryBuilder::AddRangeData(const common::Time time,
|
|
const sensor::RangeData& range_data) {
|
|
// Initialize extrapolator now if we do not ever use an IMU.
|
|
if (!options_.use_imu_data()) {
|
|
InitializeExtrapolator(time);
|
|
}
|
|
|
|
if (extrapolator_ == nullptr) {
|
|
// Until we've initialized the extrapolator with our first IMU message, we
|
|
// cannot compute the orientation of the rangefinder.
|
|
LOG(INFO) << "Extrapolator not yet initialized.";
|
|
return nullptr;
|
|
}
|
|
if (num_accumulated_ == 0) {
|
|
first_pose_estimate_ = extrapolator_->ExtrapolatePose(time).cast<float>();
|
|
accumulated_range_data_ =
|
|
sensor::RangeData{Eigen::Vector3f::Zero(), {}, {}};
|
|
}
|
|
|
|
const transform::Rigid3f tracking_delta =
|
|
first_pose_estimate_.inverse() *
|
|
extrapolator_->ExtrapolatePose(time).cast<float>();
|
|
const sensor::RangeData range_data_in_first_tracking =
|
|
sensor::TransformRangeData(range_data, tracking_delta);
|
|
// Drop any returns below the minimum range and convert returns beyond the
|
|
// maximum range into misses.
|
|
for (const Eigen::Vector3f& hit : range_data_in_first_tracking.returns) {
|
|
const Eigen::Vector3f delta = hit - range_data_in_first_tracking.origin;
|
|
const float range = delta.norm();
|
|
if (range >= options_.min_range()) {
|
|
if (range <= options_.max_range()) {
|
|
accumulated_range_data_.returns.push_back(hit);
|
|
} else {
|
|
accumulated_range_data_.misses.push_back(
|
|
range_data_in_first_tracking.origin +
|
|
options_.missing_data_ray_length() / range * delta);
|
|
}
|
|
}
|
|
}
|
|
++num_accumulated_;
|
|
|
|
if (num_accumulated_ >= options_.scans_per_accumulation()) {
|
|
num_accumulated_ = 0;
|
|
return AddAccumulatedRangeData(
|
|
time, sensor::TransformRangeData(accumulated_range_data_,
|
|
tracking_delta.inverse()));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::unique_ptr<LocalTrajectoryBuilder::InsertionResult>
|
|
LocalTrajectoryBuilder::AddAccumulatedRangeData(
|
|
const common::Time time, const sensor::RangeData& range_data) {
|
|
// Transforms 'range_data' into a frame where gravity direction is
|
|
// approximately +z.
|
|
const transform::Rigid3d gravity_alignment = transform::Rigid3d::Rotation(
|
|
extrapolator_->EstimateGravityOrientation(time));
|
|
const sensor::RangeData gravity_aligned_range_data =
|
|
TransformAndFilterRangeData(gravity_alignment.cast<float>(), range_data);
|
|
if (gravity_aligned_range_data.returns.empty()) {
|
|
LOG(WARNING) << "Dropped empty horizontal range data.";
|
|
return nullptr;
|
|
}
|
|
|
|
// Computes a gravity aligned pose prediction.
|
|
const transform::Rigid3d non_gravity_aligned_pose_prediction =
|
|
extrapolator_->ExtrapolatePose(time);
|
|
const transform::Rigid2d pose_prediction = transform::Project2D(
|
|
non_gravity_aligned_pose_prediction * gravity_alignment.inverse());
|
|
|
|
transform::Rigid2d pose_estimate_2d;
|
|
ScanMatch(time, pose_prediction, gravity_aligned_range_data,
|
|
&pose_estimate_2d);
|
|
const transform::Rigid3d pose_estimate =
|
|
transform::Embed3D(pose_estimate_2d) * gravity_alignment;
|
|
extrapolator_->AddPose(time, pose_estimate);
|
|
|
|
last_pose_estimate_ = {
|
|
time, pose_estimate,
|
|
sensor::TransformPointCloud(
|
|
gravity_aligned_range_data.returns,
|
|
transform::Embed3D(pose_estimate_2d.cast<float>()))};
|
|
|
|
if (motion_filter_.IsSimilar(time, pose_estimate)) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Querying the active submaps must be done here before calling
|
|
// InsertRangeData() since the queried values are valid for next insertion.
|
|
std::vector<std::shared_ptr<const Submap>> insertion_submaps;
|
|
for (const std::shared_ptr<Submap>& submap : active_submaps_.submaps()) {
|
|
insertion_submaps.push_back(submap);
|
|
}
|
|
active_submaps_.InsertRangeData(
|
|
TransformRangeData(gravity_aligned_range_data,
|
|
transform::Embed3D(pose_estimate_2d.cast<float>())));
|
|
|
|
sensor::AdaptiveVoxelFilter adaptive_voxel_filter(
|
|
options_.loop_closure_adaptive_voxel_filter_options());
|
|
const sensor::PointCloud filtered_gravity_aligned_point_cloud =
|
|
adaptive_voxel_filter.Filter(gravity_aligned_range_data.returns);
|
|
|
|
return common::make_unique<InsertionResult>(InsertionResult{
|
|
std::make_shared<const mapping::TrajectoryNode::Data>(
|
|
mapping::TrajectoryNode::Data{
|
|
time,
|
|
gravity_alignment.rotation(),
|
|
filtered_gravity_aligned_point_cloud,
|
|
{}, // 'high_resolution_point_cloud' is only used in 3D.
|
|
{}, // 'low_resolution_point_cloud' is only used in 3D.
|
|
}),
|
|
pose_estimate, std::move(insertion_submaps)});
|
|
}
|
|
|
|
const mapping::PoseEstimate& LocalTrajectoryBuilder::pose_estimate() const {
|
|
return last_pose_estimate_;
|
|
}
|
|
|
|
void LocalTrajectoryBuilder::AddImuData(const sensor::ImuData& imu_data) {
|
|
CHECK(options_.use_imu_data()) << "An unexpected IMU packet was added.";
|
|
InitializeExtrapolator(imu_data.time);
|
|
extrapolator_->AddImuData(imu_data);
|
|
}
|
|
|
|
void LocalTrajectoryBuilder::AddOdometerData(
|
|
const sensor::OdometryData& odometry_data) {
|
|
if (extrapolator_ == nullptr) {
|
|
// Until we've initialized the extrapolator we cannot add odometry data.
|
|
LOG(INFO) << "Extrapolator not yet initialized.";
|
|
return;
|
|
}
|
|
extrapolator_->AddOdometryData(odometry_data);
|
|
}
|
|
|
|
void LocalTrajectoryBuilder::InitializeExtrapolator(const common::Time time) {
|
|
if (extrapolator_ != nullptr) {
|
|
return;
|
|
}
|
|
// We derive velocities from poses which are at least 1 ms apart for numerical
|
|
// stability. Usually poses known to the extrapolator will be further apart
|
|
// in time and thus the last two are used.
|
|
constexpr double kExtrapolationEstimationTimeSec = 0.001;
|
|
extrapolator_ = common::make_unique<mapping::PoseExtrapolator>(
|
|
::cartographer::common::FromSeconds(kExtrapolationEstimationTimeSec),
|
|
options_.imu_gravity_time_constant());
|
|
extrapolator_->AddPose(time, transform::Rigid3d::Identity());
|
|
}
|
|
|
|
} // namespace mapping_2d
|
|
} // namespace cartographer
|