Purge some additional jets (#1000)
parent
1f9c78a82b
commit
ee530d2423
|
@ -61,10 +61,10 @@ constexpr double RadToDeg(double rad) { return 180. * rad / M_PI; }
|
||||||
template <typename T>
|
template <typename T>
|
||||||
T NormalizeAngleDifference(T difference) {
|
T NormalizeAngleDifference(T difference) {
|
||||||
while (difference > M_PI) {
|
while (difference > M_PI) {
|
||||||
difference -= T(2. * M_PI);
|
difference -= 2. * M_PI;
|
||||||
}
|
}
|
||||||
while (difference < -M_PI) {
|
while (difference < -M_PI) {
|
||||||
difference += T(2. * M_PI);
|
difference += 2. * M_PI;
|
||||||
}
|
}
|
||||||
return difference;
|
return difference;
|
||||||
}
|
}
|
||||||
|
@ -74,6 +74,15 @@ T atan2(const Eigen::Matrix<T, 2, 1>& vector) {
|
||||||
return ceres::atan2(vector.y(), vector.x());
|
return ceres::atan2(vector.y(), vector.x());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
inline void QuaternionProduct(const double* const z, const T* const w,
|
||||||
|
T* const zw) {
|
||||||
|
zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
|
||||||
|
zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
|
||||||
|
zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
|
||||||
|
zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace common
|
} // namespace common
|
||||||
} // namespace cartographer
|
} // namespace cartographer
|
||||||
|
|
||||||
|
|
|
@ -64,9 +64,9 @@ class OccupiedSpaceCostFunction2D {
|
||||||
const Eigen::Matrix<T, 3, 1> world = transform * point;
|
const Eigen::Matrix<T, 3, 1> world = transform * point;
|
||||||
interpolator.Evaluate(
|
interpolator.Evaluate(
|
||||||
(limits.max().x() - world[0]) / limits.resolution() - 0.5 +
|
(limits.max().x() - world[0]) / limits.resolution() - 0.5 +
|
||||||
T(kPadding),
|
double(kPadding),
|
||||||
(limits.max().y() - world[1]) / limits.resolution() - 0.5 +
|
(limits.max().y() - world[1]) / limits.resolution() - 0.5 +
|
||||||
T(kPadding),
|
double(kPadding),
|
||||||
&residual[i]);
|
&residual[i]);
|
||||||
residual[i] = scaling_factor_ * (1. - residual[i]);
|
residual[i] = scaling_factor_ * (1. - residual[i]);
|
||||||
}
|
}
|
||||||
|
|
|
@ -20,6 +20,7 @@
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
|
|
||||||
#include "Eigen/Core"
|
#include "Eigen/Core"
|
||||||
|
#include "cartographer/common/math.h"
|
||||||
#include "ceres/ceres.h"
|
#include "ceres/ceres.h"
|
||||||
#include "ceres/rotation.h"
|
#include "ceres/rotation.h"
|
||||||
|
|
||||||
|
@ -41,12 +42,9 @@ class RotationDeltaCostFunctor3D {
|
||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
bool operator()(const T* const rotation_quaternion, T* residual) const {
|
bool operator()(const T* const rotation_quaternion, T* residual) const {
|
||||||
T delta[4];
|
std::array<T, 4> delta;
|
||||||
T target_rotation_inverse[4] = {
|
common::QuaternionProduct(target_rotation_inverse_, rotation_quaternion,
|
||||||
T(target_rotation_inverse_[0]), T(target_rotation_inverse_[1]),
|
delta.data());
|
||||||
T(target_rotation_inverse_[2]), T(target_rotation_inverse_[3])};
|
|
||||||
ceres::QuaternionProduct(target_rotation_inverse, rotation_quaternion,
|
|
||||||
delta);
|
|
||||||
// Will compute the squared norm of the imaginary component of the delta
|
// Will compute the squared norm of the imaginary component of the delta
|
||||||
// quaternion which is sin(phi/2)^2.
|
// quaternion which is sin(phi/2)^2.
|
||||||
residual[0] = scaling_factor_ * delta[1];
|
residual[0] = scaling_factor_ * delta[1];
|
||||||
|
|
|
@ -32,10 +32,10 @@ static std::array<T, 3> ComputeUnscaledError(
|
||||||
const T h[3] = {cos_theta_i * delta_x + sin_theta_i * delta_y,
|
const T h[3] = {cos_theta_i * delta_x + sin_theta_i * delta_y,
|
||||||
-sin_theta_i * delta_x + cos_theta_i * delta_y,
|
-sin_theta_i * delta_x + cos_theta_i * delta_y,
|
||||||
end[2] - start[2]};
|
end[2] - start[2]};
|
||||||
return {{T(relative_pose.translation().x()) - h[0],
|
return {{relative_pose.translation().x() - h[0],
|
||||||
T(relative_pose.translation().y()) - h[1],
|
relative_pose.translation().y() - h[1],
|
||||||
common::NormalizeAngleDifference(
|
common::NormalizeAngleDifference(relative_pose.rotation().angle() -
|
||||||
T(relative_pose.rotation().angle()) - h[2])}};
|
h[2])}};
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
|
@ -72,9 +72,9 @@ static std::array<T, 6> ComputeUnscaledError(
|
||||||
transform::RotationQuaternionToAngleAxisVector(
|
transform::RotationQuaternionToAngleAxisVector(
|
||||||
h_rotation_inverse * relative_pose.rotation().cast<T>());
|
h_rotation_inverse * relative_pose.rotation().cast<T>());
|
||||||
|
|
||||||
return {{T(relative_pose.translation().x()) - h_translation[0],
|
return {{relative_pose.translation().x() - h_translation[0],
|
||||||
T(relative_pose.translation().y()) - h_translation[1],
|
relative_pose.translation().y() - h_translation[1],
|
||||||
T(relative_pose.translation().z()) - h_translation[2],
|
relative_pose.translation().z() - h_translation[2],
|
||||||
angle_axis_difference[0], angle_axis_difference[1],
|
angle_axis_difference[0], angle_axis_difference[1],
|
||||||
angle_axis_difference[2]}};
|
angle_axis_difference[2]}};
|
||||||
}
|
}
|
||||||
|
@ -107,13 +107,15 @@ std::array<T, 4> SlerpQuaternions(const T* const start, const T* const end,
|
||||||
// interval, then the quaternions are likely to be collinear.
|
// interval, then the quaternions are likely to be collinear.
|
||||||
T prev_scale(1. - factor);
|
T prev_scale(1. - factor);
|
||||||
T next_scale(factor);
|
T next_scale(factor);
|
||||||
if (abs_cos_theta < T(1. - 1e-5)) {
|
if (abs_cos_theta < 1. - 1e-5) {
|
||||||
const T theta = acos(abs_cos_theta);
|
const T theta = acos(abs_cos_theta);
|
||||||
const T sin_theta = sin(theta);
|
const T sin_theta = sin(theta);
|
||||||
prev_scale = sin(prev_scale * theta) / sin_theta;
|
prev_scale = sin((1. - factor) * theta) / sin_theta;
|
||||||
next_scale = sin(next_scale * theta) / sin_theta;
|
next_scale = sin(factor * theta) / sin_theta;
|
||||||
|
}
|
||||||
|
if (cos_theta < 0.) {
|
||||||
|
next_scale = -next_scale;
|
||||||
}
|
}
|
||||||
if (cos_theta < T(0.)) next_scale = -next_scale;
|
|
||||||
return {{prev_scale * start[0] + next_scale * end[0],
|
return {{prev_scale * start[0] + next_scale * end[0],
|
||||||
prev_scale * start[1] + next_scale * end[1],
|
prev_scale * start[1] + next_scale * end[1],
|
||||||
prev_scale * start[2] + next_scale * end[2],
|
prev_scale * start[2] + next_scale * end[2],
|
||||||
|
|
|
@ -64,17 +64,17 @@ Eigen::Matrix<T, 3, 1> RotationQuaternionToAngleAxisVector(
|
||||||
// angle that represents this orientation.
|
// angle that represents this orientation.
|
||||||
if (normalized_quaternion.w() < 0.) {
|
if (normalized_quaternion.w() < 0.) {
|
||||||
// Multiply by -1. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=560
|
// Multiply by -1. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=560
|
||||||
normalized_quaternion.w() *= T(-1.);
|
normalized_quaternion.w() *= -1.;
|
||||||
normalized_quaternion.x() *= T(-1.);
|
normalized_quaternion.x() *= -1.;
|
||||||
normalized_quaternion.y() *= T(-1.);
|
normalized_quaternion.y() *= -1.;
|
||||||
normalized_quaternion.z() *= T(-1.);
|
normalized_quaternion.z() *= -1.;
|
||||||
}
|
}
|
||||||
// We convert the normalized_quaternion into a vector along the rotation axis
|
// We convert the normalized_quaternion into a vector along the rotation axis
|
||||||
// with length of the rotation angle.
|
// with length of the rotation angle.
|
||||||
const T angle = T(2.) * atan2(normalized_quaternion.vec().norm(),
|
const T angle =
|
||||||
normalized_quaternion.w());
|
2. * atan2(normalized_quaternion.vec().norm(), normalized_quaternion.w());
|
||||||
constexpr double kCutoffAngle = 1e-7; // We linearize below this angle.
|
constexpr double kCutoffAngle = 1e-7; // We linearize below this angle.
|
||||||
const T scale = angle < kCutoffAngle ? T(2.) : angle / sin(angle / T(2.));
|
const T scale = angle < kCutoffAngle ? T(2.) : angle / sin(angle / 2.);
|
||||||
return Eigen::Matrix<T, 3, 1>(scale * normalized_quaternion.x(),
|
return Eigen::Matrix<T, 3, 1>(scale * normalized_quaternion.x(),
|
||||||
scale * normalized_quaternion.y(),
|
scale * normalized_quaternion.y(),
|
||||||
scale * normalized_quaternion.z());
|
scale * normalized_quaternion.z());
|
||||||
|
|
Loading…
Reference in New Issue