Move occupied space cost function to .cc (#1200)
parent
a9045fa375
commit
ecaa95f3b0
|
@ -71,7 +71,7 @@ void CeresScanMatcher2D::Match(const Eigen::Vector2d& target_translation,
|
|||
ceres::Problem problem;
|
||||
CHECK_GT(options_.occupied_space_weight(), 0.);
|
||||
problem.AddResidualBlock(
|
||||
OccupiedSpaceCostFunction2D::CreateAutoDiffCostFunction(
|
||||
CreateOccupiedSpaceCostFunction2D(
|
||||
options_.occupied_space_weight() /
|
||||
std::sqrt(static_cast<double>(point_cloud.size())),
|
||||
point_cloud, grid),
|
||||
|
|
|
@ -0,0 +1,119 @@
|
|||
/*
|
||||
* Copyright 2018 The Cartographer Authors
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "cartographer/mapping/internal/2d/scan_matching/occupied_space_cost_function_2d.h"
|
||||
#include "cartographer/mapping/probability_values.h"
|
||||
#include "ceres/cubic_interpolation.h"
|
||||
|
||||
namespace cartographer {
|
||||
namespace mapping {
|
||||
namespace scan_matching {
|
||||
namespace {
|
||||
|
||||
// Computes a cost for matching the 'point_cloud' to the 'grid' with
|
||||
// a 'pose'. The cost increases with poorer correspondence of the grid and the
|
||||
// point observation (e.g. points falling into less occupied space).
|
||||
class OccupiedSpaceCostFunction2D {
|
||||
public:
|
||||
OccupiedSpaceCostFunction2D(const double scaling_factor,
|
||||
const sensor::PointCloud& point_cloud,
|
||||
const Grid2D& grid)
|
||||
: scaling_factor_(scaling_factor),
|
||||
point_cloud_(point_cloud),
|
||||
grid_(grid) {}
|
||||
|
||||
template <typename T>
|
||||
bool operator()(const T* const pose, T* residual) const {
|
||||
Eigen::Matrix<T, 2, 1> translation(pose[0], pose[1]);
|
||||
Eigen::Rotation2D<T> rotation(pose[2]);
|
||||
Eigen::Matrix<T, 2, 2> rotation_matrix = rotation.toRotationMatrix();
|
||||
Eigen::Matrix<T, 3, 3> transform;
|
||||
transform << rotation_matrix, translation, T(0.), T(0.), T(1.);
|
||||
|
||||
const GridArrayAdapter adapter(grid_);
|
||||
ceres::BiCubicInterpolator<GridArrayAdapter> interpolator(adapter);
|
||||
const MapLimits& limits = grid_.limits();
|
||||
|
||||
for (size_t i = 0; i < point_cloud_.size(); ++i) {
|
||||
// Note that this is a 2D point. The third component is a scaling factor.
|
||||
const Eigen::Matrix<T, 3, 1> point((T(point_cloud_[i].x())),
|
||||
(T(point_cloud_[i].y())), T(1.));
|
||||
const Eigen::Matrix<T, 3, 1> world = transform * point;
|
||||
interpolator.Evaluate(
|
||||
(limits.max().x() - world[0]) / limits.resolution() - 0.5 +
|
||||
static_cast<double>(kPadding),
|
||||
(limits.max().y() - world[1]) / limits.resolution() - 0.5 +
|
||||
static_cast<double>(kPadding),
|
||||
&residual[i]);
|
||||
residual[i] = scaling_factor_ * residual[i];
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr int kPadding = INT_MAX / 4;
|
||||
class GridArrayAdapter {
|
||||
public:
|
||||
enum { DATA_DIMENSION = 1 };
|
||||
|
||||
explicit GridArrayAdapter(const Grid2D& grid) : grid_(grid) {}
|
||||
|
||||
void GetValue(const int row, const int column, double* const value) const {
|
||||
if (row < kPadding || column < kPadding || row >= NumRows() - kPadding ||
|
||||
column >= NumCols() - kPadding) {
|
||||
*value = kMaxCorrespondenceCost;
|
||||
} else {
|
||||
*value = static_cast<double>(grid_.GetCorrespondenceCost(
|
||||
Eigen::Array2i(column - kPadding, row - kPadding)));
|
||||
}
|
||||
}
|
||||
|
||||
int NumRows() const {
|
||||
return grid_.limits().cell_limits().num_y_cells + 2 * kPadding;
|
||||
}
|
||||
|
||||
int NumCols() const {
|
||||
return grid_.limits().cell_limits().num_x_cells + 2 * kPadding;
|
||||
}
|
||||
|
||||
private:
|
||||
const Grid2D& grid_;
|
||||
};
|
||||
|
||||
OccupiedSpaceCostFunction2D(const OccupiedSpaceCostFunction2D&) = delete;
|
||||
OccupiedSpaceCostFunction2D& operator=(const OccupiedSpaceCostFunction2D&) =
|
||||
delete;
|
||||
|
||||
const double scaling_factor_;
|
||||
const sensor::PointCloud& point_cloud_;
|
||||
const Grid2D& grid_;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
ceres::CostFunction* CreateOccupiedSpaceCostFunction2D(
|
||||
const double scaling_factor, const sensor::PointCloud& point_cloud,
|
||||
const Grid2D& grid) {
|
||||
return new ceres::AutoDiffCostFunction<OccupiedSpaceCostFunction2D,
|
||||
ceres::DYNAMIC /* residuals */,
|
||||
3 /* pose variables */>(
|
||||
new OccupiedSpaceCostFunction2D(scaling_factor, point_cloud, grid),
|
||||
point_cloud.size());
|
||||
}
|
||||
|
||||
} // namespace scan_matching
|
||||
} // namespace mapping
|
||||
} // namespace cartographer
|
|
@ -17,106 +17,20 @@
|
|||
#ifndef CARTOGRAPHER_MAPPING_INTERNAL_2D_SCAN_MATCHING_OCCUPIED_SPACE_COST_FUNCTION_2D_H_
|
||||
#define CARTOGRAPHER_MAPPING_INTERNAL_2D_SCAN_MATCHING_OCCUPIED_SPACE_COST_FUNCTION_2D_H_
|
||||
|
||||
#include "Eigen/Core"
|
||||
#include "Eigen/Geometry"
|
||||
#include "cartographer/mapping/2d/grid_2d.h"
|
||||
#include "cartographer/mapping/probability_values.h"
|
||||
#include "cartographer/sensor/point_cloud.h"
|
||||
#include "ceres/ceres.h"
|
||||
#include "ceres/cubic_interpolation.h"
|
||||
|
||||
namespace cartographer {
|
||||
namespace mapping {
|
||||
namespace scan_matching {
|
||||
|
||||
// Computes a cost for matching the 'point_cloud' to the 'grid' with
|
||||
// Creates a cost function for matching the 'point_cloud' to the 'grid' with
|
||||
// a 'pose'. The cost increases with poorer correspondence of the grid and the
|
||||
// point observation (e.g. points falling into less occupied space).
|
||||
class OccupiedSpaceCostFunction2D {
|
||||
public:
|
||||
static ceres::CostFunction* CreateAutoDiffCostFunction(
|
||||
ceres::CostFunction* CreateOccupiedSpaceCostFunction2D(
|
||||
const double scaling_factor, const sensor::PointCloud& point_cloud,
|
||||
const Grid2D& grid) {
|
||||
return new ceres::AutoDiffCostFunction<OccupiedSpaceCostFunction2D,
|
||||
ceres::DYNAMIC /* residuals */,
|
||||
3 /* pose variables */>(
|
||||
new OccupiedSpaceCostFunction2D(scaling_factor, point_cloud, grid),
|
||||
point_cloud.size());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool operator()(const T* const pose, T* residual) const {
|
||||
Eigen::Matrix<T, 2, 1> translation(pose[0], pose[1]);
|
||||
Eigen::Rotation2D<T> rotation(pose[2]);
|
||||
Eigen::Matrix<T, 2, 2> rotation_matrix = rotation.toRotationMatrix();
|
||||
Eigen::Matrix<T, 3, 3> transform;
|
||||
transform << rotation_matrix, translation, T(0.), T(0.), T(1.);
|
||||
|
||||
const GridArrayAdapter adapter(grid_);
|
||||
ceres::BiCubicInterpolator<GridArrayAdapter> interpolator(adapter);
|
||||
const MapLimits& limits = grid_.limits();
|
||||
|
||||
for (size_t i = 0; i < point_cloud_.size(); ++i) {
|
||||
// Note that this is a 2D point. The third component is a scaling factor.
|
||||
const Eigen::Matrix<T, 3, 1> point((T(point_cloud_[i].x())),
|
||||
(T(point_cloud_[i].y())), T(1.));
|
||||
const Eigen::Matrix<T, 3, 1> world = transform * point;
|
||||
interpolator.Evaluate(
|
||||
(limits.max().x() - world[0]) / limits.resolution() - 0.5 +
|
||||
static_cast<double>(kPadding),
|
||||
(limits.max().y() - world[1]) / limits.resolution() - 0.5 +
|
||||
static_cast<double>(kPadding),
|
||||
&residual[i]);
|
||||
residual[i] = scaling_factor_ * residual[i];
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr int kPadding = INT_MAX / 4;
|
||||
class GridArrayAdapter {
|
||||
public:
|
||||
enum { DATA_DIMENSION = 1 };
|
||||
|
||||
explicit GridArrayAdapter(const Grid2D& grid) : grid_(grid) {}
|
||||
|
||||
void GetValue(const int row, const int column, double* const value) const {
|
||||
if (row < kPadding || column < kPadding || row >= NumRows() - kPadding ||
|
||||
column >= NumCols() - kPadding) {
|
||||
*value = kMaxCorrespondenceCost;
|
||||
} else {
|
||||
*value = static_cast<double>(grid_.GetCorrespondenceCost(
|
||||
Eigen::Array2i(column - kPadding, row - kPadding)));
|
||||
}
|
||||
}
|
||||
|
||||
int NumRows() const {
|
||||
return grid_.limits().cell_limits().num_y_cells + 2 * kPadding;
|
||||
}
|
||||
|
||||
int NumCols() const {
|
||||
return grid_.limits().cell_limits().num_x_cells + 2 * kPadding;
|
||||
}
|
||||
|
||||
private:
|
||||
const Grid2D& grid_;
|
||||
};
|
||||
|
||||
OccupiedSpaceCostFunction2D(const double scaling_factor,
|
||||
const sensor::PointCloud& point_cloud,
|
||||
const Grid2D& grid)
|
||||
: scaling_factor_(scaling_factor),
|
||||
point_cloud_(point_cloud),
|
||||
grid_(grid) {}
|
||||
|
||||
OccupiedSpaceCostFunction2D(const OccupiedSpaceCostFunction2D&) = delete;
|
||||
OccupiedSpaceCostFunction2D& operator=(const OccupiedSpaceCostFunction2D&) =
|
||||
delete;
|
||||
|
||||
const double scaling_factor_;
|
||||
const sensor::PointCloud& point_cloud_;
|
||||
const Grid2D& grid_;
|
||||
};
|
||||
const Grid2D& grid);
|
||||
|
||||
} // namespace scan_matching
|
||||
} // namespace mapping
|
||||
|
|
|
@ -0,0 +1,57 @@
|
|||
/*
|
||||
* Copyright 2018 The Cartographer Authors
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "cartographer/mapping/internal/2d/scan_matching/occupied_space_cost_function_2d.h"
|
||||
|
||||
#include "cartographer/mapping/2d/probability_grid.h"
|
||||
#include "cartographer/mapping/probability_values.h"
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
namespace cartographer {
|
||||
namespace mapping {
|
||||
namespace scan_matching {
|
||||
namespace {
|
||||
|
||||
using ::testing::DoubleEq;
|
||||
using ::testing::ElementsAre;
|
||||
|
||||
TEST(OccupiedSpaceCostFunction2DTest, SmokeTest) {
|
||||
ProbabilityGrid grid(
|
||||
MapLimits(1., Eigen::Vector2d(1., 1.), CellLimits(2, 2)));
|
||||
sensor::PointCloud point_cloud = {Eigen::Vector3f{0.f, 0.f, 0.f}};
|
||||
ceres::Problem problem;
|
||||
std::unique_ptr<ceres::CostFunction> cost_function(
|
||||
CreateOccupiedSpaceCostFunction2D(1.f, point_cloud, grid));
|
||||
|
||||
const std::array<double, 3> pose_estimate{{0., 0., 0.}};
|
||||
const std::array<const double*, 1> parameter_blocks{{pose_estimate.data()}};
|
||||
|
||||
std::array<double, 1> residuals;
|
||||
std::array<std::array<double, 3>, 1> jacobians;
|
||||
std::array<double*, 1> jacobians_ptrs;
|
||||
for (int i = 0; i < 1; ++i) jacobians_ptrs[i] = jacobians[i].data();
|
||||
cost_function->Evaluate(parameter_blocks.data(), residuals.data(),
|
||||
jacobians_ptrs.data());
|
||||
|
||||
EXPECT_THAT(residuals, ElementsAre(DoubleEq(kMaxProbability)));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace scan_matching
|
||||
} // namespace mapping
|
||||
} // namespace cartographer
|
Loading…
Reference in New Issue