Introduces mapping::MapById for nodes in 3D. (#587)

master
Wolfgang Hess 2017-10-16 13:37:28 +02:00 committed by GitHub
parent 5ed19c15ab
commit d91afa4496
5 changed files with 123 additions and 169 deletions

View File

@ -99,7 +99,7 @@ void SparsePoseGraph::AddScan(
common::MutexLocker locker(&mutex_); common::MutexLocker locker(&mutex_);
AddTrajectoryIfNeeded(trajectory_id); AddTrajectoryIfNeeded(trajectory_id);
trajectory_nodes_.Append( const mapping::NodeId node_id = trajectory_nodes_.Append(
trajectory_id, mapping::TrajectoryNode{constant_data, optimized_pose}); trajectory_id, mapping::TrajectoryNode{constant_data, optimized_pose});
++num_trajectory_nodes_; ++num_trajectory_nodes_;
@ -121,7 +121,7 @@ void SparsePoseGraph::AddScan(
// execute the lambda. // execute the lambda.
const bool newly_finished_submap = insertion_submaps.front()->finished(); const bool newly_finished_submap = insertion_submaps.front()->finished();
AddWorkItem([=]() REQUIRES(mutex_) { AddWorkItem([=]() REQUIRES(mutex_) {
ComputeConstraintsForScan(trajectory_id, insertion_submaps, ComputeConstraintsForScan(node_id, insertion_submaps,
newly_finished_submap); newly_finished_submap);
}); });
} }
@ -178,10 +178,7 @@ void SparsePoseGraph::ComputeConstraint(const mapping::NodeId& node_id,
optimization_problem_.submap_data().at(submap_id).pose.inverse(); optimization_problem_.submap_data().at(submap_id).pose.inverse();
const transform::Rigid3d initial_relative_pose = const transform::Rigid3d initial_relative_pose =
inverse_submap_pose * optimization_problem_.node_data() inverse_submap_pose * optimization_problem_.node_data().at(node_id).pose;
.at(node_id.trajectory_id)
.at(node_id.node_index)
.pose;
std::vector<mapping::TrajectoryNode> submap_nodes; std::vector<mapping::TrajectoryNode> submap_nodes;
for (const mapping::NodeId& submap_node_id : for (const mapping::NodeId& submap_node_id :
@ -231,40 +228,23 @@ void SparsePoseGraph::ComputeConstraint(const mapping::NodeId& node_id,
void SparsePoseGraph::ComputeConstraintsForOldScans( void SparsePoseGraph::ComputeConstraintsForOldScans(
const mapping::SubmapId& submap_id) { const mapping::SubmapId& submap_id) {
const auto& submap_data = submap_data_.at(submap_id); const auto& submap_data = submap_data_.at(submap_id);
const auto& node_data = optimization_problem_.node_data(); for (const auto& node_id_data : optimization_problem_.node_data()) {
for (size_t trajectory_id = 0; trajectory_id != node_data.size(); const mapping::NodeId& node_id = node_id_data.id;
++trajectory_id) { CHECK(!trajectory_nodes_.at(node_id).trimmed());
for (const auto& index_node_data : node_data[trajectory_id]) { if (submap_data.node_ids.count(node_id) == 0) {
const mapping::NodeId node_id{static_cast<int>(trajectory_id), ComputeConstraint(node_id, submap_id);
index_node_data.first};
CHECK(!trajectory_nodes_.at(node_id).trimmed());
if (submap_data.node_ids.count(node_id) == 0) {
ComputeConstraint(node_id, submap_id);
}
} }
} }
} }
void SparsePoseGraph::ComputeConstraintsForScan( void SparsePoseGraph::ComputeConstraintsForScan(
const int trajectory_id, const mapping::NodeId& node_id,
std::vector<std::shared_ptr<const Submap>> insertion_submaps, std::vector<std::shared_ptr<const Submap>> insertion_submaps,
const bool newly_finished_submap) { const bool newly_finished_submap) {
const std::vector<mapping::SubmapId> submap_ids = const std::vector<mapping::SubmapId> submap_ids =
GrowSubmapTransformsAsNeeded(trajectory_id, insertion_submaps); GrowSubmapTransformsAsNeeded(node_id.trajectory_id, insertion_submaps);
CHECK_EQ(submap_ids.size(), insertion_submaps.size()); CHECK_EQ(submap_ids.size(), insertion_submaps.size());
const mapping::SubmapId matching_id = submap_ids.front(); const mapping::SubmapId matching_id = submap_ids.front();
const mapping::NodeId node_id{
matching_id.trajectory_id,
static_cast<size_t>(matching_id.trajectory_id) <
optimization_problem_.node_data().size() &&
!optimization_problem_.node_data()[matching_id.trajectory_id]
.empty()
? static_cast<int>(optimization_problem_.node_data()
.at(matching_id.trajectory_id)
.rbegin()
->first +
1)
: 0};
const auto& constant_data = trajectory_nodes_.at(node_id).constant_data; const auto& constant_data = trajectory_nodes_.at(node_id).constant_data;
const transform::Rigid3d& pose = constant_data->initial_pose; const transform::Rigid3d& pose = constant_data->initial_pose;
const transform::Rigid3d optimized_pose = const transform::Rigid3d optimized_pose =
@ -528,12 +508,14 @@ void SparsePoseGraph::RunOptimization() {
const auto& submap_data = optimization_problem_.submap_data(); const auto& submap_data = optimization_problem_.submap_data();
const auto& node_data = optimization_problem_.node_data(); const auto& node_data = optimization_problem_.node_data();
for (int trajectory_id = 0; for (auto node_it = node_data.begin(); node_it != node_data.end();) {
trajectory_id != static_cast<int>(node_data.size()); ++trajectory_id) { const int trajectory_id = node_it->id.trajectory_id;
const auto trajectory_end = node_data.EndOfTrajectory(trajectory_id);
const int num_nodes = trajectory_nodes_.num_indices(trajectory_id); const int num_nodes = trajectory_nodes_.num_indices(trajectory_id);
for (const auto& node_data_index : node_data.at(trajectory_id)) { for (; node_it != trajectory_end; ++node_it) {
const mapping::NodeId node_id{trajectory_id, node_data_index.first}; const mapping::NodeId node_id = node_it->id;
trajectory_nodes_.at(node_id).pose = node_data_index.second.pose; auto& node = trajectory_nodes_.at(node_id);
node.pose = node_it->data.pose;
} }
// Extrapolate all point cloud poses that were added later. // Extrapolate all point cloud poses that were added later.
const auto local_to_new_global = const auto local_to_new_global =
@ -542,10 +524,7 @@ void SparsePoseGraph::RunOptimization() {
optimized_submap_transforms_, trajectory_id); optimized_submap_transforms_, trajectory_id);
const transform::Rigid3d old_global_to_new_global = const transform::Rigid3d old_global_to_new_global =
local_to_new_global * local_to_old_global.inverse(); local_to_new_global * local_to_old_global.inverse();
int last_optimized_node_index = const int last_optimized_node_index = std::prev(node_it)->id.node_index;
node_data.at(trajectory_id).empty()
? 0
: node_data.at(trajectory_id).rbegin()->first;
for (int node_index = last_optimized_node_index + 1; node_index < num_nodes; for (int node_index = last_optimized_node_index + 1; node_index < num_nodes;
++node_index) { ++node_index) {
const mapping::NodeId node_id{trajectory_id, node_index}; const mapping::NodeId node_id{trajectory_id, node_index};

View File

@ -134,7 +134,7 @@ class SparsePoseGraph : public mapping::SparsePoseGraph {
// Adds constraints for a scan, and starts scan matching in the background. // Adds constraints for a scan, and starts scan matching in the background.
void ComputeConstraintsForScan( void ComputeConstraintsForScan(
int trajectory_id, const mapping::NodeId& node_id,
std::vector<std::shared_ptr<const Submap>> insertion_submaps, std::vector<std::shared_ptr<const Submap>> insertion_submaps,
bool newly_finished_submap) REQUIRES(mutex_); bool newly_finished_submap) REQUIRES(mutex_);

View File

@ -84,23 +84,20 @@ void OptimizationProblem::AddTrajectoryNode(
const int trajectory_id, const common::Time time, const int trajectory_id, const common::Time time,
const transform::Rigid3d& initial_pose, const transform::Rigid3d& pose) { const transform::Rigid3d& initial_pose, const transform::Rigid3d& pose) {
CHECK_GE(trajectory_id, 0); CHECK_GE(trajectory_id, 0);
node_data_.resize( trajectory_data_.resize(std::max(trajectory_data_.size(),
std::max(node_data_.size(), static_cast<size_t>(trajectory_id) + 1)); static_cast<size_t>(trajectory_id) + 1));
trajectory_data_.resize(std::max(trajectory_data_.size(), node_data_.size())); node_data_.Append(trajectory_id, NodeData{time, initial_pose, pose});
auto& trajectory_data = trajectory_data_[trajectory_id];
node_data_[trajectory_id].emplace(trajectory_data.next_node_index,
NodeData{time, initial_pose, pose});
++trajectory_data.next_node_index;
} }
void OptimizationProblem::TrimTrajectoryNode(const mapping::NodeId& node_id) { void OptimizationProblem::TrimTrajectoryNode(const mapping::NodeId& node_id) {
auto& node_data = node_data_.at(node_id.trajectory_id); node_data_.Trim(node_id);
CHECK(node_data.erase(node_id.node_index));
if (!node_data.empty() && const int trajectory_id = node_id.trajectory_id;
node_id.trajectory_id < static_cast<int>(imu_data_.size())) { if (node_data_.SizeOfTrajectoryOrZero(trajectory_id) == 0 &&
const common::Time node_time = node_data.begin()->second.time; trajectory_id < static_cast<int>(imu_data_.size())) {
auto& imu_data = imu_data_.at(node_id.trajectory_id); const common::Time node_time =
node_data_.BeginOfTrajectory(trajectory_id)->data.time;
auto& imu_data = imu_data_.at(trajectory_id);
while (imu_data.size() > 1 && imu_data[1].time <= node_time) { while (imu_data.size() > 1 && imu_data[1].time <= node_time) {
imu_data.pop_front(); imu_data.pop_front();
} }
@ -146,7 +143,7 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
CHECK(!submap_data_.empty()); CHECK(!submap_data_.empty());
CHECK(submap_data_.Contains(mapping::SubmapId{0, 0})); CHECK(submap_data_.Contains(mapping::SubmapId{0, 0}));
mapping::MapById<mapping::SubmapId, CeresPose> C_submaps; mapping::MapById<mapping::SubmapId, CeresPose> C_submaps;
std::vector<std::map<int, CeresPose>> C_nodes(node_data_.size()); mapping::MapById<mapping::NodeId, CeresPose> C_nodes;
bool first_submap = true; bool first_submap = true;
for (const auto& submap_id_data : submap_data_) { for (const auto& submap_id_data : submap_data_) {
const bool frozen = const bool frozen =
@ -177,23 +174,18 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
C_submaps.at(submap_id_data.id).translation()); C_submaps.at(submap_id_data.id).translation());
} }
} }
for (size_t trajectory_id = 0; trajectory_id != node_data_.size(); for (const auto& node_id_data : node_data_) {
++trajectory_id) { const bool frozen =
const bool frozen = frozen_trajectories.count(trajectory_id) != 0; frozen_trajectories.count(node_id_data.id.trajectory_id) != 0;
for (const auto& index_node_data : node_data_[trajectory_id]) { C_nodes.Insert(
const int node_index = index_node_data.first; node_id_data.id,
C_nodes[trajectory_id].emplace( CeresPose(node_id_data.data.pose, translation_parameterization(),
std::piecewise_construct, std::forward_as_tuple(node_index), common::make_unique<ceres::QuaternionParameterization>(),
std::forward_as_tuple( &problem));
index_node_data.second.pose, translation_parameterization(), if (frozen) {
common::make_unique<ceres::QuaternionParameterization>(), problem.SetParameterBlockConstant(C_nodes.at(node_id_data.id).rotation());
&problem)); problem.SetParameterBlockConstant(
if (frozen) { C_nodes.at(node_id_data.id).translation());
problem.SetParameterBlockConstant(
C_nodes[trajectory_id].at(node_index).rotation());
problem.SetParameterBlockConstant(
C_nodes[trajectory_id].at(node_index).translation());
}
} }
} }
// Add cost functions for intra- and inter-submap constraints. // Add cost functions for intra- and inter-submap constraints.
@ -207,44 +199,33 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
: nullptr, : nullptr,
C_submaps.at(constraint.submap_id).rotation(), C_submaps.at(constraint.submap_id).rotation(),
C_submaps.at(constraint.submap_id).translation(), C_submaps.at(constraint.submap_id).translation(),
C_nodes.at(constraint.node_id.trajectory_id) C_nodes.at(constraint.node_id).rotation(),
.at(constraint.node_id.node_index) C_nodes.at(constraint.node_id).translation());
.rotation(),
C_nodes.at(constraint.node_id.trajectory_id)
.at(constraint.node_id.node_index)
.translation());
} }
// Add constraints based on IMU observations of angular velocities and // Add constraints based on IMU observations of angular velocities and
// linear acceleration. // linear acceleration.
if (fix_z_ == FixZ::kNo) { if (fix_z_ == FixZ::kNo) {
trajectory_data_.resize(imu_data_.size()); for (auto node_it = node_data_.begin(); node_it != node_data_.end();) {
CHECK_GE(trajectory_data_.size(), node_data_.size()); const int trajectory_id = node_it->id.trajectory_id;
for (size_t trajectory_id = 0; trajectory_id != node_data_.size(); const auto trajectory_end = node_data_.EndOfTrajectory(trajectory_id);
++trajectory_id) {
if (node_data_[trajectory_id].empty()) {
// We skip empty trajectories which might not have any IMU data.
continue;
}
TrajectoryData& trajectory_data = trajectory_data_.at(trajectory_id); TrajectoryData& trajectory_data = trajectory_data_.at(trajectory_id);
problem.AddParameterBlock(trajectory_data.imu_calibration.data(), 4, problem.AddParameterBlock(trajectory_data.imu_calibration.data(), 4,
new ceres::QuaternionParameterization()); new ceres::QuaternionParameterization());
const std::deque<sensor::ImuData>& imu_data = imu_data_.at(trajectory_id); const std::deque<sensor::ImuData>& imu_data = imu_data_.at(trajectory_id);
CHECK(!imu_data.empty()); CHECK(!imu_data.empty());
auto imu_it = imu_data.cbegin(); auto imu_it = imu_data.cbegin();
for (auto node_it = node_data_[trajectory_id].begin();;) { auto prev_node_it = node_it;
const int first_node_index = node_it->first; for (++node_it; node_it != trajectory_end; ++node_it) {
const NodeData& first_node_data = node_it->second; const mapping::NodeId first_node_id = prev_node_it->id;
++node_it; const NodeData& first_node_data = prev_node_it->data;
if (node_it == node_data_[trajectory_id].end()) { prev_node_it = node_it;
break; const mapping::NodeId second_node_id = node_it->id;
} const NodeData& second_node_data = node_it->data;
const int second_node_index = node_it->first; if (second_node_id.node_index != first_node_id.node_index + 1) {
const NodeData& second_node_data = node_it->second;
if (second_node_index != first_node_index + 1) {
continue; continue;
} }
@ -258,10 +239,10 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
const IntegrateImuResult<double> result = IntegrateImu( const IntegrateImuResult<double> result = IntegrateImu(
imu_data, first_node_data.time, second_node_data.time, &imu_it); imu_data, first_node_data.time, second_node_data.time, &imu_it);
const auto next_node_it = std::next(node_it); const auto next_node_it = std::next(node_it);
if (next_node_it != node_data_[trajectory_id].end() && if (next_node_it != trajectory_end &&
next_node_it->first == second_node_index + 1) { next_node_it->id.node_index == second_node_id.node_index + 1) {
const int third_node_index = next_node_it->first; const mapping::NodeId third_node_id = next_node_it->id;
const NodeData& third_node_data = next_node_it->second; const NodeData& third_node_data = next_node_it->data;
const common::Time first_time = first_node_data.time; const common::Time first_time = first_node_data.time;
const common::Time second_time = second_node_data.time; const common::Time second_time = second_node_data.time;
const common::Time third_time = third_node_data.time; const common::Time third_time = third_node_data.time;
@ -289,10 +270,10 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
options_.acceleration_weight(), delta_velocity, options_.acceleration_weight(), delta_velocity,
common::ToSeconds(first_duration), common::ToSeconds(first_duration),
common::ToSeconds(second_duration))), common::ToSeconds(second_duration))),
nullptr, C_nodes[trajectory_id].at(second_node_index).rotation(), nullptr, C_nodes.at(second_node_id).rotation(),
C_nodes[trajectory_id].at(first_node_index).translation(), C_nodes.at(first_node_id).translation(),
C_nodes[trajectory_id].at(second_node_index).translation(), C_nodes.at(second_node_id).translation(),
C_nodes[trajectory_id].at(third_node_index).translation(), C_nodes.at(third_node_id).translation(),
&trajectory_data.gravity_constant, &trajectory_data.gravity_constant,
trajectory_data.imu_calibration.data()); trajectory_data.imu_calibration.data());
} }
@ -300,8 +281,8 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
new ceres::AutoDiffCostFunction<RotationCostFunction, 3, 4, 4, 4>( new ceres::AutoDiffCostFunction<RotationCostFunction, 3, 4, 4, 4>(
new RotationCostFunction(options_.rotation_weight(), new RotationCostFunction(options_.rotation_weight(),
result.delta_rotation)), result.delta_rotation)),
nullptr, C_nodes[trajectory_id].at(first_node_index).rotation(), nullptr, C_nodes.at(first_node_id).rotation(),
C_nodes[trajectory_id].at(second_node_index).rotation(), C_nodes.at(second_node_id).rotation(),
trajectory_data.imu_calibration.data()); trajectory_data.imu_calibration.data());
} }
} }
@ -310,66 +291,62 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
if (fix_z_ == FixZ::kYes) { if (fix_z_ == FixZ::kYes) {
// Add penalties for violating odometry or changes between consecutive scans // Add penalties for violating odometry or changes between consecutive scans
// if odometry is not available. // if odometry is not available.
for (size_t trajectory_id = 0; trajectory_id != node_data_.size(); for (auto node_it = node_data_.begin(); node_it != node_data_.end();) {
++trajectory_id) { const int trajectory_id = node_it->id.trajectory_id;
if (node_data_[trajectory_id].empty()) { const auto trajectory_end = node_data_.EndOfTrajectory(trajectory_id);
continue;
}
for (auto node_it = node_data_[trajectory_id].begin();;) {
const int node_index = node_it->first;
const NodeData& node_data = node_it->second;
++node_it;
if (node_it == node_data_[trajectory_id].end()) {
break;
}
const int next_node_index = node_it->first; auto prev_node_it = node_it;
const NodeData& next_node_data = node_it->second; for (++node_it; node_it != trajectory_end; ++node_it) {
const mapping::NodeId first_node_id = prev_node_it->id;
const NodeData& first_node_data = prev_node_it->data;
prev_node_it = node_it;
const mapping::NodeId second_node_id = node_it->id;
const NodeData& second_node_data = node_it->data;
if (next_node_index != node_index + 1) { if (second_node_id.node_index != first_node_id.node_index + 1) {
continue; continue;
} }
const bool odometry_available = const bool odometry_available =
trajectory_id < odometry_data_.size() && trajectory_id < static_cast<int>(odometry_data_.size()) &&
odometry_data_[trajectory_id].Has(next_node_data.time) && odometry_data_[trajectory_id].Has(second_node_data.time) &&
odometry_data_[trajectory_id].Has(node_data.time); odometry_data_[trajectory_id].Has(first_node_data.time);
const transform::Rigid3d relative_pose = const transform::Rigid3d relative_pose =
odometry_available odometry_available ? odometry_data_[trajectory_id]
? odometry_data_[trajectory_id] .Lookup(first_node_data.time)
.Lookup(node_data.time) .inverse() *
.inverse() * odometry_data_[trajectory_id].Lookup(
odometry_data_[trajectory_id].Lookup(next_node_data.time) second_node_data.time)
: node_data.initial_pose.inverse() * : first_node_data.initial_pose.inverse() *
next_node_data.initial_pose; second_node_data.initial_pose;
problem.AddResidualBlock( problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<SpaCostFunction, 6, 4, 3, 4, 3>( new ceres::AutoDiffCostFunction<SpaCostFunction, 6, 4, 3, 4, 3>(
new SpaCostFunction(Constraint::Pose{ new SpaCostFunction(Constraint::Pose{
relative_pose, relative_pose,
options_.consecutive_scan_translation_penalty_factor(), options_.consecutive_scan_translation_penalty_factor(),
options_.consecutive_scan_rotation_penalty_factor()})), options_.consecutive_scan_rotation_penalty_factor()})),
nullptr /* loss function */, nullptr /* loss function */, C_nodes.at(first_node_id).rotation(),
C_nodes[trajectory_id].at(node_index).rotation(), C_nodes.at(first_node_id).translation(),
C_nodes[trajectory_id].at(node_index).translation(), C_nodes.at(second_node_id).rotation(),
C_nodes[trajectory_id].at(next_node_index).rotation(), C_nodes.at(second_node_id).translation());
C_nodes[trajectory_id].at(next_node_index).translation());
} }
} }
} }
// Add fixed frame pose constraints. // Add fixed frame pose constraints.
std::deque<CeresPose> C_fixed_frames; std::deque<CeresPose> C_fixed_frames;
for (size_t trajectory_id = 0; trajectory_id != node_data_.size(); for (auto node_it = node_data_.begin(); node_it != node_data_.end();) {
++trajectory_id) { const int trajectory_id = node_it->id.trajectory_id;
if (trajectory_id >= fixed_frame_pose_data_.size()) { if (trajectory_id >= static_cast<int>(fixed_frame_pose_data_.size())) {
break; break;
} }
bool fixed_frame_pose_initialized = false; bool fixed_frame_pose_initialized = false;
for (auto& index_node_data : node_data_[trajectory_id]) { const auto trajectory_end = node_data_.EndOfTrajectory(trajectory_id);
const int node_index = index_node_data.first; for (; node_it != trajectory_end; ++node_it) {
const NodeData& node_data = index_node_data.second; const mapping::NodeId node_id = node_it->id;
const NodeData& node_data = node_it->data;
if (!fixed_frame_pose_data_.at(trajectory_id).Has(node_data.time)) { if (!fixed_frame_pose_data_.at(trajectory_id).Has(node_data.time)) {
continue; continue;
} }
@ -399,9 +376,8 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
new ceres::AutoDiffCostFunction<SpaCostFunction, 6, 4, 3, 4, 3>( new ceres::AutoDiffCostFunction<SpaCostFunction, 6, 4, 3, 4, 3>(
new SpaCostFunction(constraint_pose)), new SpaCostFunction(constraint_pose)),
nullptr, C_fixed_frames.back().rotation(), nullptr, C_fixed_frames.back().rotation(),
C_fixed_frames.back().translation(), C_fixed_frames.back().translation(), C_nodes.at(node_id).rotation(),
C_nodes.at(trajectory_id).at(node_index).rotation(), C_nodes.at(node_id).translation());
C_nodes.at(trajectory_id).at(node_index).translation());
} }
} }
@ -433,17 +409,13 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
for (const auto& C_submap_id_data : C_submaps) { for (const auto& C_submap_id_data : C_submaps) {
submap_data_.at(C_submap_id_data.id).pose = C_submap_id_data.data.ToRigid(); submap_data_.at(C_submap_id_data.id).pose = C_submap_id_data.data.ToRigid();
} }
for (size_t trajectory_id = 0; trajectory_id != node_data_.size(); for (const auto& C_node_id_data : C_nodes) {
++trajectory_id) { node_data_.at(C_node_id_data.id).pose = C_node_id_data.data.ToRigid();
for (auto& index_node_data : node_data_[trajectory_id]) {
index_node_data.second.pose =
C_nodes[trajectory_id].at(index_node_data.first).ToRigid();
}
} }
} }
const std::vector<std::map<int, NodeData>>& OptimizationProblem::node_data() const mapping::MapById<mapping::NodeId, NodeData>&
const { OptimizationProblem::node_data() const {
return node_data_; return node_data_;
} }

View File

@ -84,20 +84,19 @@ class OptimizationProblem {
void Solve(const std::vector<Constraint>& constraints, void Solve(const std::vector<Constraint>& constraints,
const std::set<int>& frozen_trajectories); const std::set<int>& frozen_trajectories);
const std::vector<std::map<int, NodeData>>& node_data() const; const mapping::MapById<mapping::NodeId, NodeData>& node_data() const;
const mapping::MapById<mapping::SubmapId, SubmapData>& submap_data() const; const mapping::MapById<mapping::SubmapId, SubmapData>& submap_data() const;
private: private:
struct TrajectoryData { struct TrajectoryData {
double gravity_constant = 9.8; double gravity_constant = 9.8;
std::array<double, 4> imu_calibration{{1., 0., 0., 0.}}; std::array<double, 4> imu_calibration{{1., 0., 0., 0.}};
int next_node_index = 0;
}; };
mapping::sparse_pose_graph::proto::OptimizationProblemOptions options_; mapping::sparse_pose_graph::proto::OptimizationProblemOptions options_;
FixZ fix_z_; FixZ fix_z_;
std::vector<std::deque<sensor::ImuData>> imu_data_; std::vector<std::deque<sensor::ImuData>> imu_data_;
std::vector<std::map<int, NodeData>> node_data_; mapping::MapById<mapping::NodeId, NodeData> node_data_;
std::vector<transform::TransformInterpolationBuffer> odometry_data_; std::vector<transform::TransformInterpolationBuffer> odometry_data_;
mapping::MapById<mapping::SubmapId, SubmapData> submap_data_; mapping::MapById<mapping::SubmapId, SubmapData> submap_data_;
std::vector<TrajectoryData> trajectory_data_; std::vector<TrajectoryData> trajectory_data_;

View File

@ -134,20 +134,20 @@ TEST_F(OptimizationProblemTest, ReducesNoise) {
std::vector<OptimizationProblem::Constraint> constraints; std::vector<OptimizationProblem::Constraint> constraints;
for (int j = 0; j != kNumNodes; ++j) { for (int j = 0; j != kNumNodes; ++j) {
constraints.push_back(OptimizationProblem::Constraint{ constraints.push_back(OptimizationProblem::Constraint{
mapping::SubmapId{0, 0}, mapping::NodeId{0, j}, mapping::SubmapId{kTrajectoryId, 0}, mapping::NodeId{kTrajectoryId, j},
OptimizationProblem::Constraint::Pose{ OptimizationProblem::Constraint::Pose{
AddNoise(test_data[j].ground_truth_pose, test_data[j].noise), 1., AddNoise(test_data[j].ground_truth_pose, test_data[j].noise), 1.,
1.}}); 1.}});
// We add an additional independent, but equally noisy observation. // We add an additional independent, but equally noisy observation.
constraints.push_back(OptimizationProblem::Constraint{ constraints.push_back(OptimizationProblem::Constraint{
mapping::SubmapId{0, 1}, mapping::NodeId{0, j}, mapping::SubmapId{kTrajectoryId, 1}, mapping::NodeId{kTrajectoryId, j},
OptimizationProblem::Constraint::Pose{ OptimizationProblem::Constraint::Pose{
AddNoise(test_data[j].ground_truth_pose, AddNoise(test_data[j].ground_truth_pose,
RandomYawOnlyTransform(0.2, 0.3)), RandomYawOnlyTransform(0.2, 0.3)),
1., 1.}}); 1., 1.}});
// We add very noisy data with a low weight to verify it is mostly ignored. // We add very noisy data with a low weight to verify it is mostly ignored.
constraints.push_back(OptimizationProblem::Constraint{ constraints.push_back(OptimizationProblem::Constraint{
mapping::SubmapId{0, 2}, mapping::NodeId{0, j}, mapping::SubmapId{kTrajectoryId, 2}, mapping::NodeId{kTrajectoryId, j},
OptimizationProblem::Constraint::Pose{ OptimizationProblem::Constraint::Pose{
kSubmap2Transform.inverse() * test_data[j].ground_truth_pose * kSubmap2Transform.inverse() * test_data[j].ground_truth_pose *
RandomTransform(1e3, 3.), RandomTransform(1e3, 3.),
@ -156,13 +156,15 @@ TEST_F(OptimizationProblemTest, ReducesNoise) {
double translation_error_before = 0.; double translation_error_before = 0.;
double rotation_error_before = 0.; double rotation_error_before = 0.;
const auto& node_data = optimization_problem_.node_data().at(0); const auto& node_data = optimization_problem_.node_data();
for (int j = 0; j != kNumNodes; ++j) { for (int j = 0; j != kNumNodes; ++j) {
translation_error_before += (test_data[j].ground_truth_pose.translation() - translation_error_before +=
node_data.at(j).pose.translation()) (test_data[j].ground_truth_pose.translation() -
.norm(); node_data.at(mapping::NodeId{kTrajectoryId, j}).pose.translation())
.norm();
rotation_error_before += transform::GetAngle( rotation_error_before += transform::GetAngle(
test_data[j].ground_truth_pose.inverse() * node_data.at(j).pose); test_data[j].ground_truth_pose.inverse() *
node_data.at(mapping::NodeId{kTrajectoryId, j}).pose);
} }
optimization_problem_.AddSubmap(kTrajectoryId, kSubmap0Transform); optimization_problem_.AddSubmap(kTrajectoryId, kSubmap0Transform);
@ -174,11 +176,13 @@ TEST_F(OptimizationProblemTest, ReducesNoise) {
double translation_error_after = 0.; double translation_error_after = 0.;
double rotation_error_after = 0.; double rotation_error_after = 0.;
for (int j = 0; j != kNumNodes; ++j) { for (int j = 0; j != kNumNodes; ++j) {
translation_error_after += (test_data[j].ground_truth_pose.translation() - translation_error_after +=
node_data.at(j).pose.translation()) (test_data[j].ground_truth_pose.translation() -
.norm(); node_data.at(mapping::NodeId{kTrajectoryId, j}).pose.translation())
.norm();
rotation_error_after += transform::GetAngle( rotation_error_after += transform::GetAngle(
test_data[j].ground_truth_pose.inverse() * node_data.at(j).pose); test_data[j].ground_truth_pose.inverse() *
node_data.at(mapping::NodeId{kTrajectoryId, j}).pose);
} }
EXPECT_GT(0.8 * translation_error_before, translation_error_after); EXPECT_GT(0.8 * translation_error_before, translation_error_after);